FuzzyPSReg: Strategies of Fuzzy Cluster-Based Point Set Registration

被引:11
作者
Liao, Qianfang [1 ]
Sun, Da [1 ]
Andreasson, Henrik [1 ]
机构
[1] Orebro Univ, Ctr Appl Autonomous Sensor Syst, S-70182 Orebro, Sweden
关键词
Measurement; Clustering algorithms; Feature extraction; Optimization; Training; Task analysis; Robot sensing systems; 3-D point clouds; fuzzy clusters; object pose estimation; point set registration; registration quality assessment; ITERATIVE CLOSEST POINT; OBJECT RECOGNITION; SCAN REGISTRATION; SINGLE IMAGE; 3D; ICP;
D O I
10.1109/TRO.2021.3123898
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This article studies the fuzzy cluster-based point set registration (FuzzyPSReg). First, we propose a new metric based on Gustafson-Kessel (GK) fuzzy clustering to measure the alignment of two point clouds. Unlike the metric based on fuzzy c-means (FCM) clustering in our previous work, the GK-based metric includes orientation properties of the point clouds, thereby providing more information for registration. We then develop the registration quality assessment of the GK-based metric, which is more sensitive to small misalignments than that of the FCM-based metric. Next, by effectively combining the two metrics, we design two FuzzyPSReg strategies with global optimization. 1) FuzzyPSReg-SS, which extends our previous work and aligns two similar-sized point clouds with greatly improved efficiency. 2) FuzzyPSReg-O2S, which aligns two point clouds with a relatively large difference in size and can be used to estimate the pose of an object in a scene. In the experiment, we use different point clouds to test and compare the proposed method with state-of-the-art registration approaches. The results demonstrate the advantages and effectiveness of our method.
引用
收藏
页码:2632 / 2651
页数:20
相关论文
共 43 条
[1]  
[Anonymous], 2015, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2015.7298801
[2]   PointNetLK: Robust & Efficient Point Cloud Registration using PointNet [J].
Aoki, Yasuhiro ;
Goforth, Hunter ;
Srivatsan, Rangaprasad Arun ;
Lucey, Simon .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :7156-7165
[3]   A METHOD FOR REGISTRATION OF 3-D SHAPES [J].
BESL, PJ ;
MCKAY, ND .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (02) :239-256
[4]   FCM - THE FUZZY C-MEANS CLUSTERING-ALGORITHM [J].
BEZDEK, JC ;
EHRLICH, R ;
FULL, W .
COMPUTERS & GEOSCIENCES, 1984, 10 (2-3) :191-203
[5]  
Blum M, 2012, IEEE INT CONF ROBOT, P1298, DOI 10.1109/ICRA.2012.6225188
[6]   Sparse Iterative Closest Point [J].
Bouaziz, Sofien ;
Tagliasacchi, Andrea ;
Pauly, Mark .
COMPUTER GRAPHICS FORUM, 2013, 32 (05) :113-123
[7]   NONLINEAR MINIMAX OPTIMIZATION AS A SEQUENCE OF LEAST PTH OPTIMIZATION WITH FINITE VALUES OF P [J].
CHARALAMBOUS, C ;
BANDLER, JW .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1976, 7 (04) :377-391
[8]   Robust euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm [J].
Chetverikov, D ;
Stepanov, D ;
Krsek, P .
IMAGE AND VISION COMPUTING, 2005, 23 (03) :299-309
[9]  
Collet A, 2009, IEEE INT CONF ROBOT, P3534
[10]   Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis [J].
Dai, Angela ;
Qi, Charles Ruizhongtai ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6545-6554