Dynamic Contrast-Enhanced MRI in Mice: An Investigation of Model Parameter Uncertainties

被引:3
作者
Rukat, Tammo [1 ,2 ]
Walker-Samuel, Simon [3 ]
Reinsberg, Stefan A. [1 ]
机构
[1] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
[2] Humboldt Univ, Dept Phys, Berlin, Germany
[3] UCL Ctr Adv Biomed Imaging, Div Med, London, England
基金
英国惠康基金; 加拿大自然科学与工程研究理事会;
关键词
dynamic contrast-enhanced-MRI; perfusion; permeability; pharmacokinetic models; tracer-kinetic models; ARTERIAL INPUT FUNCTION; DCE-MRI; TRACER KINETICS; TEMPORAL-RESOLUTION; T-1-WEIGHTED MRI; WATER EXCHANGE; TISSUE; PERMEABILITY; CANCER; REQUIREMENTS;
D O I
10.1002/mrm.25319
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeTo establish the experimental factors that dominate the uncertainty of hemodynamic parameters in commonly used pharmacokinetic models. MethodsBy fitting simulation results from a multiregion tissue exchange model (Multiple path, Multiple tracer, Indicator Dilution, 4 region), the precision and accuracy of hemodynamic parameters in dynamic contrast-enhanced MRI with four tracer kinetic models is investigated. The impact of various injection rates as well as imprecise knowledge of the arterial input functions is examined. ResultsFast injections are beneficial for K-trans precision within the extended Tofts model and within the two-compartment exchange model but do not affect the other models under investigation. Biases from errors in the arterial input functions are mostly consistent in size and direction for the simple and the extended Tofts model, while they are hardly predictable for the other models. Errors in the hematocrit introduce the greatest loss in parameter accuracy, amounting to an average K-trans bias of 40% for a 30% overestimation throughout all models. ConclusionThis simulation study allows the detailed inspection of the isolated impact from various experimental conditions on parameter uncertainty. Because parameter uncertainty comparable to human studies was found, this study represents a validation of preclinical dynamic contrast-enhanced MRI for modeling human tumor physiology. Magn Reson Med 73:1979-1987, 2015. (c) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:1979 / 1987
页数:9
相关论文
共 50 条
  • [31] An investigation into the effects of temporal resolution on hepatic dynamic contrast-enhanced MRI in volunteers and in patients with hepatocellular carcinoma
    Gill, Andrew B.
    Black, Richard T.
    Bowden, David J.
    Priest, Andrew N.
    Graves, Martin J.
    Lomas, David J.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (12) : 3187 - 3200
  • [32] Application of Distributed Parameter Model to Assessment of Glioma IDH Mutation Status by Dynamic Contrast-Enhanced Magnetic Resonance Imaging
    Li, Zongfang
    Zhao, Wei
    He, Bo
    Koh, Tong San
    Li, Yanxi
    Zeng, Yizhen
    Zhang, Zhuo
    Zhang, Jingzhong
    Hou, Zujun
    [J]. CONTRAST MEDIA & MOLECULAR IMAGING, 2020, 2020
  • [33] Heuristic linear mapping of physiological parameters in dynamic contrast-enhanced MRI without T1 measurement and contrast agent concentration
    Yuan, Jing
    Chow, Steven K. K.
    King, Ann D.
    Yeung, David K. W.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2012, 35 (04) : 916 - 925
  • [34] Quantitative Dynamic Contrast-Enhanced MRI of Pelvic and Lumbar Bone Marrow: Effect of Age and Marrow Fat Content on Pharmacokinetic Parameter Values
    Breault, Steven R.
    Heye, Tobias
    Bashir, Mustafa R.
    Dale, Brian M.
    Merkle, Elmar M.
    Reiner, Caecilia S.
    Faridi, Kamil F.
    Gupta, Rajan T.
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2013, 200 (03) : W297 - W303
  • [35] Subtle blood-brain barrier leakage rate and spatial extent: Considerations for dynamic contrast-enhanced MRI
    van de Haar, Harm J.
    Jansen, Jacobus F. A.
    Jeukens, Cecile R. L. P. N.
    Burgmans, Saartje
    van Buchem, Mark A.
    Muller, Majon
    Hofman, Paul A. M.
    Verhey, Frans R. J.
    van Osch, Matthias J. P.
    Backes, Walter H.
    [J]. MEDICAL PHYSICS, 2017, 44 (08) : 4112 - 4125
  • [36] Assessment of blood-brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review
    Heye, Anna K.
    Culling, Ross D.
    Valdes Hernandez, Maria del C.
    Thrippleton, Michael J.
    Wardlaw, Joanna M.
    [J]. NEUROIMAGE-CLINICAL, 2014, 6 : 262 - 274
  • [37] Modeling Dynamic Contrast-Enhanced MRI Data with a Constrained Local AIF
    Duan, Chong
    Kallehauge, Jesper F.
    Perez-Torres, Carlos J.
    Bretthorst, G. Larry
    Beeman, Scott C.
    Tanderup, Kari
    Ackerman, Joseph J. H.
    Garbow, Joel R.
    [J]. MOLECULAR IMAGING AND BIOLOGY, 2018, 20 (01) : 150 - 159
  • [38] Fundamentals of Tracer Kinetics for Dynamic Contrast-Enhanced MRI
    Koh, Tong San
    Bisdas, Sotirios
    Koh, Dow Mu
    Thng, Choon Hua
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2011, 34 (06) : 1262 - 1276
  • [39] Operator dependency of arterial input function in dynamic contrast-enhanced MRI
    Kleppesto, Magne
    Bjornerud, Atle
    Groote, Inge Rasmus
    Kim, Minjae
    Vardal, Jonas
    Larsson, Christopher
    [J]. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2022, 35 (01) : 105 - 112
  • [40] Dynamic contrast-enhanced imaging techniques: CT and MRI
    O'Connor, J. P. B.
    Tofts, P. S.
    Miles, K. A.
    Parkes, L. M.
    Thompson, G.
    Jackson, A.
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2011, 84 : S112 - S120