Dynamic Contrast-Enhanced MRI in Mice: An Investigation of Model Parameter Uncertainties

被引:3
作者
Rukat, Tammo [1 ,2 ]
Walker-Samuel, Simon [3 ]
Reinsberg, Stefan A. [1 ]
机构
[1] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
[2] Humboldt Univ, Dept Phys, Berlin, Germany
[3] UCL Ctr Adv Biomed Imaging, Div Med, London, England
基金
英国惠康基金; 加拿大自然科学与工程研究理事会;
关键词
dynamic contrast-enhanced-MRI; perfusion; permeability; pharmacokinetic models; tracer-kinetic models; ARTERIAL INPUT FUNCTION; DCE-MRI; TRACER KINETICS; TEMPORAL-RESOLUTION; T-1-WEIGHTED MRI; WATER EXCHANGE; TISSUE; PERMEABILITY; CANCER; REQUIREMENTS;
D O I
10.1002/mrm.25319
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeTo establish the experimental factors that dominate the uncertainty of hemodynamic parameters in commonly used pharmacokinetic models. MethodsBy fitting simulation results from a multiregion tissue exchange model (Multiple path, Multiple tracer, Indicator Dilution, 4 region), the precision and accuracy of hemodynamic parameters in dynamic contrast-enhanced MRI with four tracer kinetic models is investigated. The impact of various injection rates as well as imprecise knowledge of the arterial input functions is examined. ResultsFast injections are beneficial for K-trans precision within the extended Tofts model and within the two-compartment exchange model but do not affect the other models under investigation. Biases from errors in the arterial input functions are mostly consistent in size and direction for the simple and the extended Tofts model, while they are hardly predictable for the other models. Errors in the hematocrit introduce the greatest loss in parameter accuracy, amounting to an average K-trans bias of 40% for a 30% overestimation throughout all models. ConclusionThis simulation study allows the detailed inspection of the isolated impact from various experimental conditions on parameter uncertainty. Because parameter uncertainty comparable to human studies was found, this study represents a validation of preclinical dynamic contrast-enhanced MRI for modeling human tumor physiology. Magn Reson Med 73:1979-1987, 2015. (c) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:1979 / 1987
页数:9
相关论文
共 50 条
  • [21] An improved coverage and spatial resolution-using dual injection dynamic contrast-enhanced (ICE-DICE) MRI: A novel dynamic contrast-enhanced technique for cerebral tumors
    Li, Ka-Loh
    Buonaccorsi, Giovanni
    Thompson, Gerard
    Cain, John R.
    Watkins, Amy
    Russell, David
    Qureshi, Salman
    Evans, D. Gareth
    Lloyd, Simon K.
    Zhu, Xiaoping
    Jackson, Alan
    MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (02) : 452 - 462
  • [22] Blind Deconvolution in Dynamic Contrast-Enhanced MRI and Ultrasound
    Jirik, Radovan
    Soucek, Karel
    Mezl, Martin
    Bartos, Michal
    Drazanova, Eva
    Drafi, Frantisek
    Grossova, Lucie
    Kratochvila, Jiri
    Macicek, Ondrej
    Nylund, Kim
    Hampl, Ales
    Gilja, Odd Helge
    Taxt, Torfinn
    Starcuk, Zenon, Jr.
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 4276 - 4279
  • [23] Modeling of Contrast Agent Kinetics in the Lung Using T1-Weighted Dynamic Contrast-Enhanced MRI
    Naish, Josephine H.
    Kershaw, Lucy E.
    Buckley, David L.
    Jackson, Alan
    Waterton, John C.
    Parker, Geoffrey J. M.
    MAGNETIC RESONANCE IN MEDICINE, 2009, 61 (06) : 1507 - 1514
  • [24] Pharmacokinetic modeling of dynamic contrast-enhanced MRI using a reference region and input function tail
    Ahmed, Zaki
    Levesque, Ives R.
    MAGNETIC RESONANCE IN MEDICINE, 2020, 83 (01) : 286 - 298
  • [25] The use of error-category mapping in pharmacokinetic model analysis of dynamic contrast-enhanced MRI data
    Gill, Andrew B.
    Anandappa, Gayathri
    Patterson, Andrew J.
    Priest, Andrew N.
    Graves, Martin J.
    Janowitz, Tobias
    Jodrell, Duncan I.
    Eisen, Tim
    Lomas, David J.
    MAGNETIC RESONANCE IMAGING, 2015, 33 (02) : 246 - 251
  • [26] The Application of Dynamic Contrast-Enhanced MRI and Diffusion-Weighted MRI in Patients with Maxillofacial Tumors
    Kitamoto, Erina
    Chikui, Toru
    Kawano, Shintaro
    Ohga, Masahiro
    Kobayashi, Kouji
    Matsuo, Yoshio
    Yoshiura, Takashi
    Obara, Makoto
    Honda, Hiroshi
    Yoshiura, Kazunori
    ACADEMIC RADIOLOGY, 2015, 22 (02) : 210 - 216
  • [27] Dynamic Contrast-Enhanced MRI to Study Atherosclerotic Plaque Microvasculature
    van Hoof, Raf H. M.
    Heeneman, Sylvia
    Wildberger, Joachim E.
    Kooi, M. Eline
    CURRENT ATHEROSCLEROSIS REPORTS, 2016, 18 (06)
  • [28] Quantifying Spatial Heterogeneity in Dynamic Contrast-Enhanced MRI Parameter Maps
    Rose, Chris J.
    Mills, Samantha J.
    O'Connor, James P. B.
    Buonaccorsi, Giovanni A.
    Roberts, Caleb
    Watson, Yvonne
    Cheung, Susan
    Zhao, Sha
    Whitcher, Brandon
    Jackson, Alan
    Parker, Geoffrey J. M.
    MAGNETIC RESONANCE IN MEDICINE, 2009, 62 (02) : 488 - 499
  • [29] Quantitative dynamic contrast-enhanced MRI for mouse models using automatic detection of the arterial input function
    Kim, Jae-Hun
    Im, Geun Ho
    Yang, Jehoon
    Choi, Dongil
    Lee, Won Jae
    Lee, Jung Hee
    NMR IN BIOMEDICINE, 2012, 25 (04) : 674 - 684
  • [30] Toward a noninvasive estimate of interstitial fluid pressure by dynamic contrast-enhanced MRI in a rat model of cerebral tumor
    Elmghirbi, Rasha
    Nagaraja, Tavarekere N.
    Brown, Stephen L.
    Keenan, Kelly A.
    Panda, Swayamprava
    Cabral, Glauber
    Bagher-Ebadian, Hassan
    Divine, George W.
    Lee, Ian Y.
    Ewing, James R.
    MAGNETIC RESONANCE IN MEDICINE, 2018, 80 (05) : 2040 - 2052