Dynamic Contrast-Enhanced MRI in Mice: An Investigation of Model Parameter Uncertainties

被引:3
|
作者
Rukat, Tammo [1 ,2 ]
Walker-Samuel, Simon [3 ]
Reinsberg, Stefan A. [1 ]
机构
[1] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
[2] Humboldt Univ, Dept Phys, Berlin, Germany
[3] UCL Ctr Adv Biomed Imaging, Div Med, London, England
基金
英国惠康基金; 加拿大自然科学与工程研究理事会;
关键词
dynamic contrast-enhanced-MRI; perfusion; permeability; pharmacokinetic models; tracer-kinetic models; ARTERIAL INPUT FUNCTION; DCE-MRI; TRACER KINETICS; TEMPORAL-RESOLUTION; T-1-WEIGHTED MRI; WATER EXCHANGE; TISSUE; PERMEABILITY; CANCER; REQUIREMENTS;
D O I
10.1002/mrm.25319
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeTo establish the experimental factors that dominate the uncertainty of hemodynamic parameters in commonly used pharmacokinetic models. MethodsBy fitting simulation results from a multiregion tissue exchange model (Multiple path, Multiple tracer, Indicator Dilution, 4 region), the precision and accuracy of hemodynamic parameters in dynamic contrast-enhanced MRI with four tracer kinetic models is investigated. The impact of various injection rates as well as imprecise knowledge of the arterial input functions is examined. ResultsFast injections are beneficial for K-trans precision within the extended Tofts model and within the two-compartment exchange model but do not affect the other models under investigation. Biases from errors in the arterial input functions are mostly consistent in size and direction for the simple and the extended Tofts model, while they are hardly predictable for the other models. Errors in the hematocrit introduce the greatest loss in parameter accuracy, amounting to an average K-trans bias of 40% for a 30% overestimation throughout all models. ConclusionThis simulation study allows the detailed inspection of the isolated impact from various experimental conditions on parameter uncertainty. Because parameter uncertainty comparable to human studies was found, this study represents a validation of preclinical dynamic contrast-enhanced MRI for modeling human tumor physiology. Magn Reson Med 73:1979-1987, 2015. (c) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:1979 / 1987
页数:9
相关论文
共 50 条
  • [1] Uncertainty estimation in dynamic contrast-enhanced MRI
    Garpebring, Anders
    Brynolfsson, Patrik
    Yu, Jun
    Wirestam, Ronnie
    Johansson, Adam
    Asklund, Thomas
    Karlsson, Mikael
    MAGNETIC RESONANCE IN MEDICINE, 2013, 69 (04) : 992 - 1002
  • [2] Dynamic Contrast-Enhanced (DCE) MRI
    Li, Xin
    Huang, Wei
    Holmes, James H.
    MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2024, 32 (01) : 47 - 61
  • [3] Comparison of dynamic contrast-enhanced MRI and quantitative SPECT in a rat glioma model
    Skinner, Jack T.
    Yankeelov, Thomas E.
    Peterson, Todd E.
    Does, Mark D.
    CONTRAST MEDIA & MOLECULAR IMAGING, 2012, 7 (06) : 494 - 500
  • [4] Classic models for dynamic contrast-enhanced MRI
    Sourbron, Steven P.
    Buckley, David L.
    NMR IN BIOMEDICINE, 2013, 26 (08) : 1004 - 1027
  • [5] Dynamic contrast-enhanced MRI in oncology: how we do it
    Petralia, Giuseppe
    Summers, Paul E.
    Agostini, Andrea
    Ambrosini, Roberta
    Cianci, Roberta
    Cristel, Giulia
    Calistri, Linda
    Colagrande, Stefano
    RADIOLOGIA MEDICA, 2020, 125 (12): : 1288 - 1300
  • [6] Extended Graphical Model for Analysis of Dynamic Contrast-Enhanced MRI
    Chen, Huijun
    Li, Feiyu
    Zhao, Xihai
    Yuan, Chun
    Rutt, Brian
    Kerwin, William S.
    MAGNETIC RESONANCE IN MEDICINE, 2011, 66 (03) : 868 - 878
  • [7] Parameter estimation of perfusion models in dynamic contrast-enhanced imaging: a unified framework for model comparison
    Romain, Blandine
    Rouet, Laurence
    Ohayon, Daniel
    Lucidarme, Olivier
    d'Alche-Buc, Florence
    Letort, Veronique
    MEDICAL IMAGE ANALYSIS, 2017, 35 : 360 - 374
  • [8] Comparison of Linear and Nonlinear Implementation of the Compartmental Tissue Uptake Model for Dynamic Contrast-Enhanced MRI
    Kallehauge, Jesper F.
    Sourbron, Steven
    Irving, Benjamin
    Tanderup, Kari
    Schnabel, Julia A.
    Chappell, Michael A.
    MAGNETIC RESONANCE IN MEDICINE, 2017, 77 (06) : 2414 - 2423
  • [9] Dynamic contrast-enhanced MRI model selection for predicting tumor aggressiveness in papillary thyroid cancers
    Paudyal, Ramesh
    Lu, Yonggang
    Hatzoglou, Vaios
    Moreira, Andre
    Stambuk, Hilda E.
    Oh, Jung Hun
    Cunanan, Kristen M.
    Nunez, David Aramburu
    Mazaheri, Yousef
    Gonen, Mithat
    Ho, Alan
    Fagin, James A.
    Wong, Richard J.
    Shaha, Ashok
    Tuttle, R. Michael
    Shukla-Dave, Amita
    NMR IN BIOMEDICINE, 2020, 33 (01)
  • [10] Assessment of vessel permeability by combining dynamic contrast-enhanced and arterial spin labeling MRI
    Liu, Ho-Ling
    Chang, Ting-Ting
    Yan, Feng-Xian
    Li, Cheng-He
    Lin, Yu-Shi
    Wong, Alex M.
    NMR IN BIOMEDICINE, 2015, 28 (06) : 642 - 649