Highly sensitive protein detection via covalently linked aptamer to MoS2 and exonuclease-assisted amplification strategy

被引:24
|
作者
Gao, Li [1 ]
Li, Qin [1 ]
Deng, Zebin [1 ]
Brady, Brendan [2 ]
Xia, Ni [1 ]
Zhou, Yang [1 ]
Shi, Haixia [3 ]
机构
[1] Jiangsu Univ, Inst Life Sci, 301 Xuefu Rd, Zhenjiang 212013, Peoples R China
[2] Univ Victoria, Dept Phys, Victoria, BC, Canada
[3] Dalian Jiaotong Univ, Dept Phys Educ, 794 Huanghe Rd, Dalian 116028, Peoples R China
来源
INTERNATIONAL JOURNAL OF NANOMEDICINE | 2017年 / 12卷
关键词
Molybdenum disulfide; aptamer; thrombin; protein detection; high sensitivity; THROMBIN DETECTION; ELECTROCHEMICAL APTASENSOR; GOLD NANOPARTICLES; DNA; BIOSENSOR; NANOSHEETS; SENSOR; DEVICE; ASSAY;
D O I
10.2147/IJN.S145585
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Molybdenum disulfide (MoS2) has shown highly attractive superiority as a platform for sensing. However, DNA physisorption on the surface of MoS2 was susceptible to nonspecific probe displacement and false-positive signals. To solve these problems, we have developed a novel MoS2-aptamer nanosheet biosensor for detecting thrombin using a covalently linked aptamer to the MoS2 nanosheet. Ten percent Tween 80 was used to prevent thrombin from nonspecific binding and to rapidly form thiol-DNA/gold nanoparticle (AuNP) conjugates. Furthermore, an MoS2 and exonuclease coassisted signal amplification strategy was developed to improve the detection limit for thrombin. We used the hybridization of the aptamer molecules and the matched strand with a 5 ' terminal thiol to immobilize the aptamer molecules on the surface of AuNPs in AuNPs@MoS2 nanocomposites. Exonuclease digested the single-strand aptamer and released the thrombin, which was then detected in the next recycle. With the coassisted amplification strategy, a 6 fM detection limit was achieved, showing that this method has higher sensitivity than most reported methods for thrombin detection. The results presented in this work show that this method of covalently attaching the aptamer and using the coassisted amplification is a promising technique for the detection of protein in medical diagnostics.
引用
收藏
页码:7847 / 7853
页数:7
相关论文
共 50 条
  • [1] A highly sensitive competitive aptasensor for AFB1 detection based on an exonuclease-assisted target recycling amplification strategy
    Zhan, Hongyan
    Yang, Si
    Li, Chenxi
    Liu, Rong
    Chen, Wenliang
    Wang, Xiaoli
    Zhao, Yansong
    Xu, Kexin
    ANALYTICAL METHODS, 2022, 15 (01) : 70 - 78
  • [2] A sensitive fluorescence strategy for telomerase detection in cancer cells based on T7 exonuclease-assisted target recycling amplification
    Wang, Hai-bo
    Wu, Shuang
    Chu, Xia
    Yu, Ru-Qin
    CHEMICAL COMMUNICATIONS, 2012, 48 (47) : 5916 - 5918
  • [3] A sensitive electrochemical aptasensor for ATP detection based on exonuclease III-assisted signal amplification strategy
    Bao, Ting
    Shu, Huawei
    Wen, Wei
    Zhang, Xiuhua
    Wang, Shengfu
    ANALYTICA CHIMICA ACTA, 2015, 862 : 64 - 69
  • [4] A POCT colorimetric aptasensor for streptomycin detection using porous silica beads- enzyme linked polymer aptamer probes and exonuclease-assisted target recycling for signal amplification
    Luan, Qian
    Miao, Yangbao
    Gan, Ning
    Cao, Yuting
    Li, Tianhua
    Chen, Yinji
    SENSORS AND ACTUATORS B-CHEMICAL, 2017, 251 : 349 - 358
  • [5] An exonuclease-assisted amplification electrochemical aptasensor for Hg2+ detection based on hybridization chain reaction
    Bao, Ting
    Wen, Wei
    Zhang, Xiuhua
    Xia, Qinghua
    Wang, Shengfu
    BIOSENSORS & BIOELECTRONICS, 2015, 70 : 318 - 323
  • [6] A Highly Sensitive Electrochemical Aptasensor for Kanamycin: Leveraging RecJf Exonuclease-Assisted Target Recycling and Hybridization Chain Reaction Signal Amplification
    Xiao, Qi
    Zhang, Dongyou
    Yang, Mingli
    Liu, Shuai
    Fang, Yi
    Huang, Shan
    JOURNAL OF ANALYSIS AND TESTING, 2025, 9 (01) : 96 - 108
  • [7] Novel Colorimetric Aptasensor for Zearalenone Detection Based on Nontarget-Induced Aptamer Walker, Gold Nanoparticles, and Exonuclease-Assisted Recycling Amplification
    Taghdisi, Seyed Mohammad
    Danesh, Noor Mohammad
    Ramezani, Mohammad
    Emrani, Ahmad Sarreshtehdar
    Abnous, Khalil
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (15) : 12504 - 12509
  • [8] Label-free Fluorescent Aptasensor Based on Exonuclease-assisted Target Recycling Strategy for Sensitive Detection of Oxytetracycline
    Sun Chun-Yan
    Si Jin-Yu
    Du Cai-Yi
    Lyu Ting
    Liu Ni
    Zhang Xiao-Guang
    Wang Zuo-Zhao
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2021, 49 (09) : 1488 - 1496
  • [9] Highly sensitive protein detection based on aptamer probe and isothermal nicking enzyme assisted fluorescence signal amplification
    Xue, Liyun
    Zhou, Xiaoming
    Xing, Da
    CHEMICAL COMMUNICATIONS, 2010, 46 (39) : 7373 - 7375
  • [10] A Cascade Signal Amplification Strategy for the Ultrasensitive Fluorescence Detection of Cu2+ via λ-Exonuclease-Assisted Target Recycling with Mismatched Catalytic Hairpin Assembly
    Liu, Zhen
    Liu, Chen
    He, Liqiong
    Liu, Jinquan
    Li, Le
    Yang, Shengyuan
    Tan, Yan
    Liu, Xing
    Xiao, Xilin
    BIOSENSORS-BASEL, 2023, 13 (10):