A phase-field study of the pattern selection between dendrite and seaweed during directional solidification

被引:5
作者
Liu, Shikuan [1 ]
Guo, Chunwen [1 ]
Fan, Yuheng [1 ]
Dong, Xianglei [1 ]
Zhao, Hongliang [1 ]
Xing, Hui [3 ]
Lu, Yanli [2 ]
机构
[1] Zhengzhou Univ, Sch Mat & Engn, Zhengzhou 450001, Peoples R China
[2] Northwestern Polytech Univ, Sch Mat Sci & Engn, Xian 710072, Peoples R China
[3] Northwestern Polytech Univ, Key Lab Space Appl Phys & Chem, Xian 710129, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金; 美国国家科学基金会;
关键词
Phase-field simulation; Solidification microstructure; Dendrite-seaweed transition; Fractal dimension; ORIENTATION SELECTION; GROWTH; SIMULATIONS; MORPHOLOGY; EVOLUTION; CRYSTAL; DIAGRAM;
D O I
10.1016/j.commatsci.2021.111171
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, the dendrite-seaweed transition was studied by changing solidification conditions through a phasefiled method. Results show that with the increase of thermal gradient, the critical pulling velocity for the transition from seaweed morphology to dendrite morphology increases. And the splitting spacing of seaweeds decreases with increasing the thermal gradient. To quantitatively describe the seaweed-dendrite transition, here the fractal dimension was introduced. It is found that the fractal dimension increased with the pulling velocity in the dendritic regime and seaweed regime, while it decreased in the stage of transition from seaweed to dendrite. It indicates that the fractal dimension can be regarded as an effective tool to quantitatively describe the dendriteseaweed transition.
引用
收藏
页数:8
相关论文
共 36 条
  • [1] SYMMETRY-BROKEN DOUBLE FINGERS AND SEAWEED PATTERNS IN THIN-FILM DIRECTIONAL SOLIDIFICATION OF A NONFACETED CUBIC-CRYSTAL
    AKAMATSU, S
    FAIVRE, G
    IHLE, T
    [J]. PHYSICAL REVIEW E, 1995, 51 (05): : 4751 - 4773
  • [2] Orientation selection in solidification patterning
    Amoorezaei, Morteza
    Gurevich, Sebastian
    Provatas, Nikolas
    [J]. ACTA MATERIALIA, 2012, 60 (02) : 657 - 663
  • [3] Solidification microstructures and solid-state parallels: Recent developments, future directions
    Asta, M.
    Beckermann, C.
    Karma, A.
    Kurz, W.
    Napolitano, R.
    Plapp, M.
    Purdy, G.
    Rappaz, M.
    Trivedi, R.
    [J]. ACTA MATERIALIA, 2009, 57 (04) : 941 - 971
  • [4] Modeling melt convection in phase-field simulations of solidification
    Beckermann, C
    Diepers, HJ
    Steinbach, I
    Karma, A
    Tong, X
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 154 (02) : 468 - 496
  • [5] FORMATION OF A DENSE BRANCHING MORPHOLOGY IN INTERFACIAL GROWTH
    BENJACOB, E
    DEUTSCHER, G
    GARIK, P
    GOLDENFELD, ND
    LAREAH, Y
    [J]. PHYSICAL REVIEW LETTERS, 1986, 57 (15) : 1903 - 1906
  • [6] THE FORMATION OF PATTERNS IN NONEQUILIBRIUM GROWTH
    BENJACOB, E
    GARIK, P
    [J]. NATURE, 1990, 343 (6258) : 523 - 530
  • [7] Dendritic Growth Morphologies in Al-Zn Alloys-Part II: Phase-Field Computations
    Dantzig, J. A.
    Di Napoli, Paolo
    Friedli, J.
    Rappaz, M.
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2013, 44A (12): : 5532 - 5543
  • [8] The relationship between fractal properties of solid matrix and pore space in porous media
    Dathe, A
    Thullner, M
    [J]. GEODERMA, 2005, 129 (3-4) : 279 - 290
  • [9] Experimental evidence for dendrite tip splitting in deeply undercooled, ultrahigh purity Cu
    Dragnevski, K
    Cochrane, RF
    Mullis, AM
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (21) : 215502 - 215502
  • [10] Atomistic underpinnings for growth direction and pattern formation of hcp magnesium alloy dendrite
    Du, Jinglian
    Zhang, Ang
    Guo, Zhipeng
    Yang, Manhong
    Li, Mei
    Liu, Feng
    Xiong, Shoumei
    [J]. ACTA MATERIALIA, 2018, 161 : 35 - 46