Recent progress in electrochemical reduction of carbon dioxide on metal single-atom catalysts

被引:18
|
作者
Huo, Siming [1 ]
Lu, Jessie [2 ]
Wang, Xianqin [1 ]
机构
[1] New Jersey Inst Technol, Dept Chem & Mat Engn, Newark, NJ 07102 USA
[2] Univ Virginia, Charlottesville, VA USA
关键词
CO2RR; electrocatalysis; mechanistic aspects; single-atom catalysts; synthesis strategies; ACHIEVING HIGHLY EFFICIENT; DOPED CARBON; CO2; REDUCTION; ELECTROCATALYTIC REDUCTION; HYDROGEN EVOLUTION; NITROGEN; ELECTROREDUCTION; SITES; NI; GRAPHENE;
D O I
10.1002/ese3.1036
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electrochemical reduction reaction of CO2 (CO2RR) is a promising technology for alleviating the global warming caused by the emission of CO2. This technology, however, is still in the stage of finding efficient catalysts. The catalysts must be able to convert CO2 to other carbon-based products with high activity and selectivity to valuable chemicals. In this review, previous development of heteroatom-doped metal-free carbon materials (H-CMs) is briefly summarized. Recent progress of CO2RR promoted by metal single-atom catalysts (M-SACs) is then discussed with emphasis on the synthesis of M-SACs, the catalytic performance, and reaction mechanisms. The high temperature pyrolysis method and electrodeposition are attracting attentions recently to prepare M-SACs with high metal loading on N-doped carbon materials, a very active M-SACs system for the CO2RR. Theoretical calculations of free energy change on active sites, the Operando X-ray absorption near edge structure (XANES), and Bader charge analysis reveal a significant role of metal oxidation state and charge transfer between metal atoms and absorbed CO. The challenges and perspectives for the extensive applications of M-SACs in CO2RR are also discussed in this review.
引用
收藏
页码:1584 / 1600
页数:17
相关论文
共 50 条
  • [1] Recent progress in electrochemical reduction of carbon dioxide on metal single-atom catalysts
    Huo, Siming
    Lu, Jessie
    Wang, Xianqin
    Energy Science and Engineering, 2022, 10 (05): : 1584 - 1600
  • [2] Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide
    Tao, Yu
    Ou, Honghui
    Lei, Yongpeng
    Xiong, Yu
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2022, 43 (05):
  • [3] Single-atom catalysts for the electrochemical reduction of carbon dioxide into hydrocarbons and oxygenates
    Gandionco, Karl Adrian
    Kim, Juwon
    Bekaert, Lieven
    Hubin, Annick
    Lim, Jongwoo
    CARBON ENERGY, 2024, 6 (03)
  • [4] Keeping sight of copper in single-atom catalysts for electrochemical carbon dioxide reduction
    Charles E. Creissen
    Marc Fontecave
    Nature Communications, 13
  • [5] Neighboring effect in single-atom catalysts for the electrochemical carbon dioxide reduction reaction
    Wong, Hon Ho
    Sun, Mingzi
    Wu, Tong
    Chan, Cheuk Hei
    Lu, Lu
    Lu, Qiuyang
    Chen, Baian
    Huang, Bolong
    ESCIENCE, 2024, 4 (01):
  • [6] Keeping sight of copper in single-atom catalysts for electrochemical carbon dioxide reduction
    Creissen, Charles E.
    Fontecave, Marc
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [7] Recent advances in single atom catalysts for the electrochemical carbon dioxide reduction reaction
    Zhang, Jincheng
    Cai, Weizheng
    Hu, Fang Xin
    Yang, Hongbin
    Liu, Bin
    CHEMICAL SCIENCE, 2021, 12 (20) : 6800 - 6819
  • [8] Recent progress of metal single-atom catalysts for energy applications
    Yang, Qingqing
    Jiang, Yafei
    Zhuo, Hongying
    Mitchell, Ellen M.
    Yu, Qi
    NANO ENERGY, 2023, 111
  • [9] Recent Progress in Carbon-Supported Single-Atom Catalysts
    Bae, Ingyeong
    Noh, Jiwang
    Kim, Sunkyu
    APPLIED CHEMISTRY FOR ENGINEERING, 2025, 36 (01): : 16 - 24
  • [10] Recent Progress of 3d Transition Metal Single-Atom Catalysts for Electrochemical CO2 Reduction
    Xu, Chaochen
    Vasileff, Anthony
    Zheng, Yao
    Qiao, Shi-Zhang
    ADVANCED MATERIALS INTERFACES, 2021, 8 (05)