Biorefining: Heterogeneously Catalyzed Reactions of Carbohydrates for the Production of Furfural and Hydroxymethylfurfural

被引:378
作者
Karinen, Reetta [1 ]
Vilonen, Kati [1 ]
Niemela, Marita [1 ,2 ]
机构
[1] Aalto Univ, Sch Chem Technol, Aalto 00076, Finland
[2] Poyry Management Consulting, Vantaa 01621, Finland
关键词
carbohydrates; furfural; heterogeneous catalysis; hydroxymethylfurfural; solid acid; SOLID ACID CATALYSTS; LIQUID-PHASE DEHYDRATION; ION-EXCHANGE-RESIN; SUPERCRITICAL CARBON-DIOXIDE; N-BUTANE ISOMERIZATION; HOT COMPRESSED WATER; D-XYLOSE; SULFATED ZIRCONIA; D-FRUCTOSE; 12-TUNGSTOPHOSPHORIC ACID;
D O I
10.1002/cssc.201000375
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Furfurals are important intermediates in the chemical industry. They are typically produced by homogeneous catalysis in aqueous solutions. However, heterogeneously catalyzed processes would be beneficial in view of the principles of green chemistry: the elimination of homogeneous mineral acids makes the reaction mixtures less corrosive, produces less waste, and facilitates easy separation and recovery of the catalyst. Finding an active and stable water-tolerant solid acid catalyst still poses a challenge for the production of furfural (furan-2-carbaldehyde) and 5-(hydroxymethyl)-2-furaldehyde (HMF). Furfural is produced in the dehydration of xylose, and HMF is formed from glucose and fructose in the presence of an acidic catalyst. Bases are not active in dehydration reaction but do catalyze the isomerization of monosaccharides, which is favorable when using glucose as a raw material. In addition to the desired dehydration of monosaccharides, many undesired side reactions take place, reducing the selectivity and deactivating the catalyst. In addition, the catalyst properties play an important role in the selectivity. In this Review, catalytic conversion approaches are summarized, focusing on the heterogeneously catalyzed formation of furfural. The attractiveness of catalytic concepts is evaluated, keeping in mind productivity, sustainability, and environmental footprint.
引用
收藏
页码:1002 / 1016
页数:15
相关论文
共 90 条
[2]  
ALDAJANI WW, 2008, TAPPI J JUN, P3
[3]   KINETIC-STUDIES OF THE REACTIONS OF KETOSES AND ALDOSES IN WATER AT HIGH-TEMPERATURE .3. MECHANISM OF FORMATION OF 2-FURALDEHYDE FROM D-XYLOSE [J].
ANTAL, MJ ;
LEESOMBOON, T ;
MOK, WS ;
RICHARDS, GN .
CARBOHYDRATE RESEARCH, 1991, 217 :71-85
[4]   Acid sites characterization of niobium phosphate catalysts and their activity in fructose dehydration to 5-hydroxymethyl-2-furaldehyde [J].
Armaroli, T ;
Busca, G ;
Carlini, C ;
Giuttari, M ;
Galletti, AMR ;
Sbrana, G .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2000, 151 (1-2) :233-243
[5]   Dehydration of fructose to 5-hydroxymethylfurfural in sub-critical water over heterogeneous zirconium phosphate catalysts [J].
Asghari, Feridoun Salak ;
Yoshida, Hiroyuki .
CARBOHYDRATE RESEARCH, 2006, 341 (14) :2379-2387
[6]   Preparation of 5-hydroymethylfurfural by dehydration of fructose in the presence of acidic ionic liquid [J].
Bao, Quanxi ;
Qiao, Kun ;
Tomida, Daisuke ;
Yokoyama, Chiaki .
CATALYSIS COMMUNICATIONS, 2008, 9 (06) :1383-1388
[7]   Heterogeneous zirconium and titanium catalysts for the selective synthesis of 5-hydroxymethyl-2-furaldehyde from carbohydrates [J].
Benvenuti, F ;
Carlini, C ;
Patrono, P ;
Galletti, AMR ;
Sbrana, G ;
Massucci, MA ;
Galli, P .
APPLIED CATALYSIS A-GENERAL, 2000, 193 (1-2) :147-153
[8]   Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose [J].
Boussarsar, Houda ;
Roge, Barbara ;
Mathlouthi, Mohamed .
BIORESOURCE TECHNOLOGY, 2009, 100 (24) :6537-6542
[9]  
Brei V.V., 2005, THEOR EXP CHEM+, V41, P165
[10]   Fuel ethanol production:: Process design trends and integration opportunities [J].
Cardona, Carlos A. ;
Sanchez, Oscar J. .
BIORESOURCE TECHNOLOGY, 2007, 98 (12) :2415-2457