Predicting forest fire kernel density at multiple scales with geographically weighted regression in Mexico

被引:42
作者
Angelica Monjaras-Vega, Norma [1 ]
Ivan Briones-Herrera, Carlos [1 ]
Jose Vega-Nieva, Daniel [1 ]
Calleros-Flores, Eric [2 ]
Javier Corral-Rivas, Jose [1 ]
Marcelo Lopez-Serrano, Pablito [2 ]
Pompa-Garcia, Marin [1 ]
Arturo Rodriguez-Trejo, Dante [3 ]
Carrillo-Parra, Artemio [2 ]
Gonzalez-Caban, Armando [4 ]
Alvarado-Celestino, Ernesto [5 ]
Jolly, William Matthew [6 ]
机构
[1] Univ Juarez Estado Durango, Fac Ciencias Forestales, Rio Papaloapan & Blvd,Durango S-N, Durango 34120, Mexico
[2] Univ Juarez Estado Durango, Inst Silvicultura & Ind Madera, Blvd Guadiana 501,Ciudad Univ, Durango 34120, Mexico
[3] Univ Autonoma Chapingo, Div Ciencias Forestales, Km 38-5 Carretera Mexico Texcoco, Chapingo 56230, Estado De Mexic, Mexico
[4] Forest Serv, Pacific Southwest Res Stn, USDA, 4955 Canyon Crest Dr, Riverside, CA 92507 USA
[5] Univ Washington, Sch Environm & Forest Sci, Mailbox 352100, Seattle, WA 98195 USA
[6] Forest Serv, USDA, Missoula Fire Sci Lab, Missoula, MT 59808 USA
关键词
Fire occurrence drivers; Human factors; Biomass; GAM; GWR; Kernel bandwidth; MODELING SPATIAL-PATTERNS; HUMAN-CAUSED WILDFIRES; TEMPORAL ANALYSIS; DRIVING FACTORS; BOREAL FOREST; IGNITION; DRIVERS; DURANGO; HETEROGENEITY; VARIABILITY;
D O I
10.1016/j.scitotenv.2020.137313
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Identifying the relative importance of human and environmental drivers on fire occurrence in different regions and scales is critical for a sound fire management. Nevertheless, studies analyzing fire occurrence spatial patterns at multiple scales, covering the regional to national levels at multiple spatial resolutions, both in the fire occurrence drivers and in fire density, are very scarce. Furthermore, there is a scarcity of studies that analyze the spatial stationarity in the relationships of fire occurrence and its drivers at multiple scales. The current study aimed at predicting the spatial patterns of fire occurrence at regional and national levels in Mexico, utilizing geographically weighted regression (GWR) to predict fire density, calculated with two different approaches -regular grid density and kernel density - at spatial resolutions from 5 to 50 km, both in the dependent and in the independent human and environmental candidate variables. A better performance of GWR, both in goodness of fit and residual correlation reduction, was observed for prediction of kernel density as opposed to regular grid density. Our study is, to our best knowledge, the first study utilizing GWR to predict fire kernel density, and the first study to utilize GWR considering multiple scales, both in the dependent and independent variables. GWR models goodness of fit increased with fire kernel density search radius (bandwidths), but saturation in predictive capacity was apparent at 15-20 km for most regions. This suggests that this scale has a good potential for operational use in fire prevention and suppression decision-making as a compromise between predictive capability and spatial detail in fire occurrence predictions. This result might be a consequence of the specific spatial patterns of fire occurrence in Mexico and should be analyzed in future studies replicating this methodology elsewhere. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 97 条
  • [71] Environmental controls on the distribution of wildfire at multiple spatial scales
    Parisien, Marc-Andre
    Moritz, Max A.
    [J]. ECOLOGICAL MONOGRAPHS, 2009, 79 (01) : 127 - 154
  • [72] Spatial heterogeneity of factors influencing forest fires size in northern Mexico
    Perez-Verdin, Gustavo
    Antonio Marquez-Linares, Marco
    Salmeron-Macias, Maricela
    [J]. JOURNAL OF FORESTRY RESEARCH, 2014, 25 (02) : 291 - 300
  • [73] Pérez-Verdín G, 2013, MADERA BOSQUES, V19, P37
  • [74] Forecasting distributions of large federal-lands fires utilizing satellite and gridded weather information
    Preisler, Haiganoush K.
    Burgan, Robert E.
    Eidenshink, Jeffery C.
    Klaver, Jacqueline M.
    Klaver, Robert W.
    [J]. INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2009, 18 (05) : 508 - 516
  • [75] Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression
    Rodrigues, M.
    de la Riva, J.
    Fotheringham, S.
    [J]. APPLIED GEOGRAPHY, 2014, 48 : 52 - 63
  • [76] A comprehensive spatial-temporal analysis of driving factors of human-caused wildfires in Spain using Geographically Weighted Logistic Regression
    Rodrigues, Marcos
    Jimenez-Ruano, Adrian
    Pena-Angulo, Dhais
    de la Riva, Juan
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2018, 225 : 177 - 192
  • [77] A methodology for determining operational priorities for prevention and suppression of wildland fires
    Rodriguez y Silva, Francisco
    Molina Martinez, Juan Ramon
    Gonzalez-Caban, Armando
    [J]. INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2014, 23 (04) : 544 - 554
  • [78] Fire ecology of Mexican pines and a fire management proposal
    Rodríguez-Trejo, DA
    Fulé, PZ
    [J]. INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2003, 12 (01) : 23 - 37
  • [79] Rodríguez-Trejo DA, 2011, AGROCIENCIA-MEXICO, V45, P593
  • [80] Effectiveness of protected areas in mitigating fire within their boundaries:: Case study of Chiapas, Mexico
    Roman-Cuesta, Rosa Maria
    Martinez-Vilalta, Jordi
    [J]. CONSERVATION BIOLOGY, 2006, 20 (04) : 1074 - 1086