Investigation of metabolic profile of pimavanserin in rats by ultrahigh-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry

被引:6
|
作者
Wu, Wenying [1 ]
Chu, Yanjie [2 ]
Wang, Shixiao [1 ]
Sun, Xiaoyang [1 ]
Zhang, Jingjing [1 ]
Wang, Yannian [2 ]
Chen, Xiaohui [1 ]
机构
[1] Shenyang Pharmaceut Univ, Sch Pharm, 103 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China
[2] Shenyang Pharmaceut Univ, Sch Tradit Chinese Med, Shenyang 110016, Liaoning, Peoples R China
关键词
PARKINSONS-DISEASE PSYCHOSIS; PLASMA; IDENTIFICATION; URINE;
D O I
10.1002/rcm.8025
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
RationalePimavanserin, a selective serotonin 2A receptor inverse agonist, is a promising candidate for treating Parkinson's disease psychosis. Our previous study revealed that there might be the presence of extensive metabolites of pimavanserin in rats. However, the metabolic fate of pimavanserin in vivo remains unknown. Thus, it is essential to develop an efficient method to investigate the metabolic profile of pimavanserin in rats. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to date has the highest mass measurement accuracy and resolution of any mass spectrometry platform. MethodsAfter a single intragastric administration of pimavanserin at a dose of 50mg kg(-1), plasma, bile, urine and feces were collected from rats. A novel and efficient strategy was developed to analyze the metabolic profile of pimavanserin in vivo based on ultrahigh-performance liquid chromatography (UHPLC) coupled with FT-ICR-MS. ResultsA total of 23 metabolites were detected and tentatively identified through comparing their mass spectrometry profiles with those of pimavanserin. These metabolites were found in feces (22), bile (21), rat urine (16) and plasma (15). Results demonstrated that metabolic pathways of pimavanserin in rats included dehydrogenation, demethylation, deethylation, depropylation, debutylation, hydroxylation, dihydroxylation and trihydroxylation. ConclusionsA total of 22 phase I metabolites of pimavanserin were detected and tentatively identified. This report presents the first study of screening and identification of the metabolites of pimavanserin. The UHPLC/FT-ICR-MS method is a powerful tool for exploring and identifying metabolites in complex biological samples.
引用
收藏
页码:269 / 276
页数:8
相关论文
共 50 条
  • [31] Fast, generic gradient high performance liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry for the accurate mass analysis of mixtures
    Speir, JP
    Perkins, G
    Berg, C
    Pullen, F
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2000, 14 (20) : 1937 - 1942
  • [32] Quantitation of ion abundances in Fourier transform ion cyclotron resonance mass spectrometry
    Goodner, KL
    Milgram, KE
    Williams, KR
    Watson, CH
    Eyler, JR
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 1998, 9 (11) : 1204 - 1212
  • [33] Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Applications for Metabolomics
    Cochran, Darcy
    Powers, Robert
    BIOMEDICINES, 2024, 12 (08)
  • [34] Charge Reversal Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
    Lobodin, Vladislav V.
    Savory, Joshua J.
    Kaiser, Nathan K.
    Dunk, Paul W.
    Marshall, Alan G.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2013, 24 (02) : 213 - 221
  • [35] 40 years of Fourier transform ion cyclotron resonance mass spectrometry
    Marshall, Alan G.
    Chen, Tong
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2015, 377 : 410 - 420
  • [36] Charge reversal fourier transform ion cyclotron resonance mass spectrometry
    Marshall, A.G. (marshall@magnet.fsu.edu), 1600, Springer Science and Business Media, LLC (24):
  • [37] Protein research by Fourier Transform Ion Cyclotron Resonance mass spectrometry
    Janis, J.
    Kemia-Kemi/Finnish Chemical Journal, 2000, 27 (02): : 98 - 102
  • [38] Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry
    Hendrickson, CL
    Emmett, MR
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1999, 50 : 517 - 536
  • [39] Fourier transform ion cyclotron resonance mass spectrometry: State of the art
    Marshall, Alan G.
    Chen, Tong
    Blakney, Greg T.
    Hendrickson, Christopher L.
    Kaiser, Nathan K.
    McKenna, Amy M.
    Rodgers, Ryan P.
    Weisbrod, Chad R.
    Young, Nicolas L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [40] Application of Fourier transform ion cyclotron resonance mass spectrometry to oligosaccharides
    Park, YM
    Lebrilla, CB
    MASS SPECTROMETRY REVIEWS, 2005, 24 (02) : 232 - 264