Input-to-state stability of robust receding horizon control with an expected value cost

被引:17
作者
Goulart, Paul J. [1 ]
Kerrigan, Eric C. [1 ,2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Aeronaut, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2AZ, England
关键词
predictive control; robust control; constrained systems;
D O I
10.1016/j.automatica.2007.08.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the stability of a class of receding horizon control (RHC) laws for constrained linear discrete-time systems subject to bounded state disturbances and convex state and input constraints. The paper considers the class of finite horizon feedback control policies parameterized as affine functions of the system state, calculation of which can be shown to be tractable via a convex reparameterization. When minimizing the expected value of a finite horizon quadratic cost, we show that the value function is convex. When solving this optimal control problem at each time step and implementing the result in a receding horizon fashion, we provide sufficient conditions under which the closed-loop system is input-to-state stable (ISS). (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1171 / 1174
页数:4
相关论文
共 11 条
[1]   Adjustable robust solutions of uncertain linear programs [J].
Ben-Tal, A ;
Goryashko, A ;
Guslitzer, E ;
Nemirovski, A .
MATHEMATICAL PROGRAMMING, 2004, 99 (02) :351-376
[2]   Systems with persistent disturbances: predictive control with restricted constraints [J].
Chisci, L ;
Rossiter, JA ;
Zappa, G .
AUTOMATICA, 2001, 37 (07) :1019-1028
[3]   Optimization over state feedback policies for robust control with constraints [J].
Goulart, PJ ;
Kerrigan, EC ;
Maciejowski, JA .
AUTOMATICA, 2006, 42 (04) :523-533
[4]  
GOULART PJ, 2006, THESIS U CAMBRIDGE
[5]   Input-to-state stability for discrete-time nonlinear systems [J].
Jiang, ZP ;
Wang, Y .
AUTOMATICA, 2001, 37 (06) :857-869
[6]   Constrained receding horizon predictive control for systems with disturbances [J].
Lee, YI ;
Kouvaritakis, B .
INTERNATIONAL JOURNAL OF CONTROL, 1999, 72 (11) :1027-1032
[7]  
Lofberg J., 2003, THESIS LINKOPING U S
[8]   Robust model predictive control of constrained linear systems with bounded disturbances [J].
Mayne, DQ ;
Seron, MM ;
Rakovic, SV .
AUTOMATICA, 2005, 41 (02) :219-224
[9]  
Rockafellar R, 2004, Variational Analysis
[10]  
Rockafellar R. T., 1970, Convex Analysis