An effective memetic differential evolution algorithm based on chaotic local search

被引:199
作者
Jia, Dongli [1 ,2 ]
Zheng, Guoxin [1 ]
Khan, Muhammad Khurram [3 ]
机构
[1] Shanghai Univ, Key Lab Special Fiber Opt & Opt Access Networks, Shanghai 200072, Peoples R China
[2] Hebei Univ Engn, Sch Informat & Elect Engn, Handan 056038, Peoples R China
[3] King Saud Univ, CoEIA, Riyadh 11653, Saudi Arabia
关键词
GENETIC ALGORITHM; OPTIMIZATION;
D O I
10.1016/j.ins.2011.03.018
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes an effective memetic differential evolution (DE) algorithm, or DECLS, that utilizes a chaotic local search (CLS) with a 'shrinking' strategy. The CLS helps to improve the optimizing performance of the canonical DE by exploring a huge search space in the early run phase to avoid premature convergence, and exploiting a small region in the later run phase to refine the final solutions. Moreover, the parameter settings of the DECLS are controlled in an adaptive manner to further enhance the search ability. To evaluate the effectiveness and efficiency of the proposed DECLS algorithm, we compared it with four state-of-the-art DE variants and the IPOP-CMA-ES algorithm on a set of 20 selected benchmark functions. Results show that the DECLS is significantly better than, or at least comparable to, the other optimizers in terms of convergence performance and solution accuracy. Besides, the DECLS has also shown certain advantages in solving high dimensional problems. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3175 / 3187
页数:13
相关论文
共 36 条
  • [1] Auger A, 2005, IEEE C EVOL COMPUTAT, P1769
  • [2] Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
    Brest, Janez
    Greiner, Saso
    Boskovic, Borko
    Mernik, Marjan
    Zumer, Vijern
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) : 646 - 657
  • [3] High-Dimensional Real-Parameter Optimization using Self-Adaptive Differential Evolution Algorithm with Population Size Reduction
    Brest, Janez
    Zamuda, Ales
    Boskovic, Borko
    Maucec, Mirjam Sepesy
    Zumer, Viljem
    [J]. 2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 2032 - 2039
  • [4] Two improved differential evolution schemes for faster global search
    Das, Swagatam
    Konar, Amit
    Chakraborty, Uday K.
    [J]. GECCO 2005: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOLS 1 AND 2, 2005, : 991 - 998
  • [5] Differential Evolution: A Survey of the State-of-the-Art
    Das, Swagatam
    Suganthan, Ponnuthurai Nagaratnam
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (01) : 4 - 31
  • [6] Kernel-induced fuzzy clustering of image pixels with an improved differential evolution algorithm
    Das, Swagatam
    Sil, Sudeshna
    [J]. INFORMATION SCIENCES, 2010, 180 (08) : 1237 - 1256
  • [7] Differential Evolution Using a Neighborhood-Based Mutation Operator
    Das, Swagatam
    Abraham, Ajith
    Chakraborty, Uday K.
    Konar, Amit
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (03) : 526 - 553
  • [8] On stability and convergence of the population-dynamics in differential evolution
    Dasgupta, Sambarta
    Das, Swagatam
    Biswas, Arijit
    Abraham, Ajith
    [J]. AI COMMUNICATIONS, 2009, 22 (01) : 1 - 20
  • [9] A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 Special Session on Real Parameter Optimization
    Garcia, Salvador
    Molina, Daniel
    Lozano, Manuel
    Herrera, Francisco
    [J]. JOURNAL OF HEURISTICS, 2009, 15 (06) : 617 - 644
  • [10] Ghosh S, 2010, GECCO-2010 COMPANION PUBLICATION: PROCEEDINGS OF THE 12TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, P2073