Fourth-order difference equation for the associated Meixner and Charlier polynomials

被引:13
作者
Letessier, J
Ronveaux, A
Valent, G
机构
[1] UNIV PARIS 07, PHYS THEOR & HAUTES ENERGIES LAB, CNRS, UA 280, F-75251 PARIS 05, FRANCE
[2] FAC UNIV NOTRE DAME PAIX, B-5000 NAMUR, BELGIUM
关键词
associated polynomials; difference equations;
D O I
10.1016/0377-0427(96)87163-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An explicit representation of the associated Meixner polynomials (with a real association parameter gamma greater than or equal to 0) is given in terms of hypergeometric functions. This representation allows to derive the fourth-order difference equation verified by these polynomials. Appropriate limits give the fourth-order difference equation for the associated Charlier polynomials and the fourth-order differential equations for the associated Laguerre and Hermite polynomials.
引用
收藏
页码:331 / 341
页数:11
相关论文
共 11 条
[1]  
ATAKISHIYEV NM, IN PRESS J THEORET M
[2]  
Char B.W., 1988, MAPLE REFERENCE MANU
[3]  
Chihara TS., 1978, INTRO ORTHOGONAL POL
[4]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
[5]  
Erdelyi A, 1953, HIGHER TRANSCENDENTA
[6]   LINEAR BIRTH AND DEATH MODELS AND ASSOCIATED LAGUERRE AND MEIXNER POLYNOMIALS [J].
ISMAIL, MEH ;
LETESSIER, J ;
VALENT, G .
JOURNAL OF APPROXIMATION THEORY, 1988, 55 (03) :337-348
[7]  
ISMAIL MEH, 1990, NATO ADV SCI I C-MAT, V294, P229
[8]   SOME RESULTS ON CO-RECURSIVE ASSOCIATED LAGUERRE AND JACOBI-POLYNOMIALS [J].
LETESSIER, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (02) :528-548
[9]  
Magnus W., 1966, FORMULAS THEOREMS SP, V52, P508
[10]  
RONVEAUX A, UNPUB 1 ASS CLASSICA