Poisson errors and adaptive rebinning in X-ray powder diffraction data

被引:1
作者
Mendenhall, Marcus H. [1 ]
机构
[1] NIST, 100 Bur Dr, Gaithersburg, MD 20899 USA
关键词
powder diffraction; poisson statistics; adaptive rebinning; FUNDAMENTAL PARAMETERS APPROACH;
D O I
10.1017/S0885715618000726
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This work provides a short summary of techniques for formally-correct handling of statistical uncertainties in Poisson-statistics dominated data, with emphasis on X-ray powder diffraction patterns. Correct assignment of uncertainties for low counts is documented. Further, we describe a technique for adaptively rebinning such data sets to provide more uniform statistics across a pattern with a wide range of count rates, from a few (or no) counts in a background bin to on-peak regions with many counts. This permits better plotting of data and analysis of a smaller number of points in a fitting package. without significant degradation of the information content of the data set. Examples of the effect of this on a diffraction data set are given. (C) 2018 International Centre for Diffraction Data. This is a work of the U.S. Government and is not subject to copyright protection in the United States.
引用
收藏
页码:266 / 269
页数:4
相关论文
共 50 条
  • [21] A practical guide to pharmaceutical analyses using X-ray powder diffraction
    Fawcett, T. G.
    Gates-Rector, S.
    Gindhart, A. M.
    Rost, M.
    Kabekkodu, S. N.
    Blanton, J. R.
    Blanton, T. N.
    POWDER DIFFRACTION, 2019, 34 (02) : 164 - 183
  • [22] Powder X-ray diffraction under extreme conditions of pressure and temperature
    Fiquet, G
    Andrault, D
    JOURNAL OF SYNCHROTRON RADIATION, 1999, 6 : 81 - 86
  • [23] Applications of X-ray Powder Diffraction in Protein Crystallography and Drug Screening
    Spiliopoulou, Maria
    Valmas, Alexandros
    Triandafillidis, Dimitris-Panagiotis
    Kosinas, Christos
    Fitch, Andrew
    Karavassili, Fotini
    Margiolaki, Irene
    CRYSTALS, 2020, 10 (02):
  • [24] Observation and characterization of structural phase transitions by X-ray powder diffraction
    Depmeier, Wulf
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2006, 22 (06) : 367 - 377
  • [25] LiSbS2-mC16: Structure Determination from X-ray Powder Diffraction Data
    Huber, Sebastian
    Pfitzner, Arno
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2014, 640 (8-9): : 1596 - 1599
  • [26] Structure analysis of 2D membrane proteins using X-ray powder diffraction data
    Dilanian, R. A.
    Darmanin, C.
    Varghese, J. N.
    Wilkins, S. W.
    Oka, T.
    Yagi, N.
    Quiney, H. M.
    Nugenta, K. A.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C591 - C592
  • [27] Crystal structure determination of p-bromoaniline using laboratory X-ray powder diffraction data
    Delgado, G
    Mora, AJ
    EPDIC 7: EUROPEAN POWDER DIFFRACTION, PTS 1 AND 2, 2001, 378-3 : 795 - 797
  • [28] Molecular crystal structures from powder X-ray diffraction techniques
    Cheung, Eugene Y.
    Harris, Kenneth D. M.
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2006, : 15 - 20
  • [29] Debye temperature of wurtzite AIN determined by X-ray powder diffraction
    Wang, J.
    Zhao, M.
    Jin, S. F.
    Li, D. D.
    Yang, J. W.
    Hu, W. J.
    Wang, W. J.
    POWDER DIFFRACTION, 2014, 29 (04) : 352 - 355
  • [30] Multiple powder diffraction data for an accurate charge density study using synchrotron radiation x-ray
    Kasai, Hidetaka
    Nishibori, Eiji
    PHYSICA SCRIPTA, 2016, 91 (04)