Self-Concordant Analysis of Frank-Wolfe Algorithms

被引:0
|
作者
Dvurechensky, Pavel [1 ,2 ,3 ]
Ostroukhov, Petr [4 ]
Safin, Kamil [4 ]
Shtern, Shimrit [5 ]
Staudigl, Mathias [6 ]
机构
[1] Weierstrass Inst Appl Anal & Stochast, Berlin, Germany
[2] Natl Res Univ Higher Sch Econ, Moscow, Russia
[3] Inst Informat Transmiss Problems RAS, Moscow, Russia
[4] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia
[5] Technion Israel Inst Technol, Haifa, Israel
[6] Maastricht Univ, Dept Data Sci & Knowledge Engn, Maastricht, Netherlands
来源
25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019) | 2019年
关键词
OPTIMIZATION; CONVERGENCE; COMPLEXITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Projection-free optimization via different variants of the Frank-Wolfe (FW), a.k.a. Conditional Gradient method has become one of the cornerstones in optimization for machine learning since in many cases the linear minimization oracle is much cheaper to implement than projections and some sparsity needs to be preserved. In a number of applications, e.g. Poisson inverse problems or quantum state tomography, the loss is given by a self-concordant (SC) function having unbounded curvature, implying absence of theoretical guarantees for the existing FW methods. We use the theory of SC functions to provide a new adaptive step size for FW methods and prove global convergence rate O(1/k) after k iterations. If the problem admits a stronger local linear minimization oracle, we construct a novel FW method with linear convergence rate for SC functions.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] FRANK-WOLFE ALGORITHM FROM OPTIMIZATION TO EQUILIBRIUM PROBLEMS
    Moudafi, Abdellatif
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2019, 20 (11) : 2335 - 2345
  • [22] Distributing Frank-Wolfe via map-reduce
    Moharrer, Armin
    Ioannidis, Stratis
    KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 60 (02) : 665 - 690
  • [23] A Note on a Self-concordant Barrier Function
    Jin, Zhengjing
    Bai, Yanqin
    Zhang, Lipu
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON APPLIED MATRIX THEORY, 2009, : 279 - 282
  • [25] Revisiting the approximate Caratheodory problem via the Frank-Wolfe algorithm
    Combettes, Cyrille W.
    Pokutta, Sebastian
    MATHEMATICAL PROGRAMMING, 2023, 197 (01) : 191 - 214
  • [26] Accelerating Convergence of the Frank-Wolfe Algorithm for Solving the Traffic Assignment Problem
    Arrache, Saida
    Ouafi, Rachid
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2008, 8 (05): : 181 - 186
  • [27] High-Probability Bounds for Robust Stochastic Frank-Wolfe Algorithm
    Tang, Tongyi
    Balasubramanian, Krishnakumar
    Lee, Thomas C. M.
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 1917 - 1927
  • [28] Projection Efficient Subgradient Method and Optimal Nonsmooth Frank-Wolfe Method
    Thekumparampil, Kiran Koshy
    Jain, Prateek
    Netrapalli, Praneeth
    Oh, Sewoong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [29] Frank-Wolfe Optimization for Symmetric-NMF under Simplicial Constraint
    Zhao, Han
    Gordon, Geoff
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2018, : 124 - 134
  • [30] An away-step Frank-Wolfe algorithm for constrained multiobjective optimization
    Goncalves, Douglas S.
    Goncalves, Max L. N.
    Melo, Jefferson G.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 88 (03) : 759 - 781