van der Waals graphene/MoS2 heterostructures: tuning the electronic properties and Schottky barrier by applying a biaxial strain

被引:31
作者
Fang, Qinglong [1 ,2 ]
Li, Min [1 ]
Zhao, Xumei [1 ]
Yuan, Lin [1 ]
Wang, Boyu [1 ]
Xia, Caijuan [1 ]
Ma, Fei [1 ,2 ]
机构
[1] Xian Polytech Univ, Sch Sci, Xian 710048, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
来源
MATERIALS ADVANCES | 2022年 / 3卷 / 01期
基金
中国国家自然科学基金;
关键词
INITIO MOLECULAR-DYNAMICS; ELASTIC PROPERTIES; MOS2; MONOLAYER; TRANSISTORS; TRANSITION; 1ST-PRINCIPLES; PHOSPHORENE; CONTACTS;
D O I
10.1039/d1ma00806d
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
First principles calculations are performed to study the effects of the interlayer distance and biaxial strain on the electronic properties and contact properties of graphene/MoS2 heterostructures. The interlayer interaction is weakened and the charge transfer from the graphene layer to the MoS2 layer is reduced with increasing interlayer distance in graphene/MoS2 heterostructures, resulting in a shift of the Fermi level to a high energy state. The n-type Schottky barrier is formed with phi(SB,N) values of 0.647 eV, 0.568 eV, 0.509 eV, and 0.418 eV when the interlayer distances are 3.209 angstrom, 3.346 angstrom, 3.482 angstrom, and 3.755 angstrom, respectively. The interlayer distance and charge density difference change slightly, but the electronic structure of the graphene/MoS2 heterostructure changes obviously by applying the biaxial strain. For the biaxial strain from -4% to +6%, the phi(SB,P) gradually increases for the graphene/MoS2 heterostructure, while the phi(SB,N) increases initially and then decreases. Moreover, the phi(SB,N) is only 0.080 eV under a biaxial strain of +6%, indicating that the Ohmic contact is nearly formed. The results demonstrate the significant effects of a biaxial strain on the physical properties of 2D heterostructures.
引用
收藏
页码:624 / 631
页数:8
相关论文
共 51 条
[1]   Stretching and Breaking of Ultrathin MoS2 [J].
Bertolazzi, Simone ;
Brivio, Jacopo ;
Kis, Andras .
ACS NANO, 2011, 5 (12) :9703-9709
[2]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[3]   Electronic Properties of Phosphorene/Graphene and Phosphorene/Hexagonal Boron Nitride Heterostructures [J].
Cai, Yongqing ;
Zhang, Gang ;
Zhang, Yong-Wei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (24) :13929-13936
[4]   Elastic Properties of Freely Suspended MoS2 Nanosheets [J].
Castellanos-Gomez, Andres ;
Poot, Menno ;
Steele, Gary A. ;
van der Zant, Herre S. J. ;
Agrait, Nicolas ;
Rubio-Bollinger, Gabino .
ADVANCED MATERIALS, 2012, 24 (06) :772-775
[5]   Few-layer graphene under high pressure: Raman and X-ray diffraction studies [J].
Clark, S. M. ;
Jeon, Ki-Joon ;
Chen, Jing-Yin ;
Yoo, Choong-Shik .
SOLID STATE COMMUNICATIONS, 2013, 154 :15-18
[6]   Bandgap Engineering of Strained Monolayer and Bilayer MoS2 [J].
Conley, Hiram J. ;
Wang, Bin ;
Ziegler, Jed I. ;
Haglund, Richard F., Jr. ;
Pantelides, Sokrates T. ;
Bolotin, Kirill I. .
NANO LETTERS, 2013, 13 (08) :3626-3630
[7]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[8]   Superlubricity of graphite [J].
Dienwiebel, M ;
Verhoeven, GS ;
Pradeep, N ;
Frenken, JWM ;
Heimberg, JA ;
Zandbergen, HW .
PHYSICAL REVIEW LETTERS, 2004, 92 (12) :126101-1
[9]   Strong plasmonic enhancement of photovoltage in graphene [J].
Echtermeyer, T. J. ;
Britnell, L. ;
Jasnos, P. K. ;
Lombardo, A. ;
Gorbachev, R. V. ;
Grigorenko, A. N. ;
Geim, A. K. ;
Ferrari, A. C. ;
Novoselov, K. S. .
NATURE COMMUNICATIONS, 2011, 2
[10]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191