Densities and Apparent Molar Volumes of Atmospherically Important Electrolyte Solutions. 2. The Systems H+-HSO4--SO42--H2O from 0 to 3 mol kg-1 as a Function of Temperature and H+-NH4+-HSO4--SO42--H2O from 0 to 6 mol kg-1 at 25 °C Using a Pitzer Ion Interaction Model, and NH4HSO4-H2O and (NH4)3H(SO4)2-H2O over the Entire Concentration Range

被引:26
|
作者
Clegg, S. L. [1 ,2 ]
Wexler, A. S. [2 ]
机构
[1] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England
[2] Univ Calif Davis, Air Qual Res Ctr, Davis, CA 95616 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2011年 / 115卷 / 15期
基金
美国海洋和大气管理局; 英国自然环境研究理事会;
关键词
AQUEOUS SULFURIC-ACID; HEAT-CAPACITIES; REFRACTIVE-INDEXES; SULFATE-SOLUTIONS; BISULFATE ION; WATER; DISSOCIATION; THERMODYNAMICS; COEFFICIENTS; MIXTURES;
D O I
10.1021/jp1089933
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A Pitzer ion interaction model has been applied to the systems H2SO4-H2O (0-3 mol kg(-1), 0-55 degrees C) and H2SO4-(NH4)(2)SO4-H2O (0-6 mol kg(-1), 25 degrees C) for the calculation of apparent molar volume and density. The dissociation reaction HSO4(aq)- <-> H-(aq)(+) + SO4(aq)2- is treated explicitly. Apparent molar volumes of the SO42- ion at infinite dilution were obtained from part 1 of This work,(1) and the value for the bisulfate ion was determined in this study from 0 to 55 degrees C. In dilute solutions of both systems, the change in the degree of dissociation of the HSO4- ion with concentration results in much larger variations of the apparent molar volumes of the solutes than for conventional strong (fully dissociated) electrolytes. Densities and apparent molar volumes are tabulated. Apparent molar volumes calculated using the model are combined with other data for the solutes NH4HSO4 and (NH4)(3)H(SO4)(2) at 25 degrees C to obtain apparent molar volumes and densities over the entire concentration range (including solutions supersaturated with respect to the salts).
引用
收藏
页码:3461 / 3474
页数:14
相关论文
共 50 条
  • [21] (NH4)3[VO2(SO4)2(H2O)2]•1.5H2O
    Hashimoto, M
    Kubata, M
    Yagasaki, A
    ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS, 2000, 56 : 1411 - 1412
  • [22] Heterogeneous uptake of gaseous N2O5 by (NH4)2SO4, NH4HSO4, and H2SO4 aerosols
    Kane, SM
    Caloz, F
    Leu, MT
    JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (26): : 6465 - 6470
  • [23] STUDY OF ZRO2-H2SO4-(NH4)2SO4(NH4CL)-H2O SYSTEMS
    MOTOV, DL
    SOZINOVA, YP
    RYSKINA, MP
    ZHURNAL NEORGANICHESKOI KHIMII, 1988, 33 (07): : 1854 - 1859
  • [24] CASO4-GA(HSO4)3-H2O AND CASO4-IN2(SO4)3-H2O SYSTEMS
    MOSHINSKII, AS
    MENSHOVA, II
    ZHURNAL NEORGANICHESKOI KHIMII, 1976, 21 (08): : 2230 - 2233
  • [25] VIBRATION-SPECTRA OF FERROELECTRIC SULFATES .2. RBHSO4, NH4HSO4 AND (NH4)3H(SO4)2
    ACHARYA, PK
    NARAYANAN, PS
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 1973, 11 (07) : 519 - 521
  • [26] Phase Equilibria of the Ternary Systems ((NH4)2SO4-MNSO4-H2O) and ((NH4)2SO4-MGSO4-H2O) at 303.15 K
    Zhang, Yujia
    Bai, Youxiang
    Ren, Yongsheng
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2020, 65 (04): : 1514 - 1522
  • [27] SOLUBILITY IN K2SO4-(NH4)2SO4-H2O AND K2SO4-COSO4-H2O SYSTEMS AT 25 DEGREES
    SHEVCHUK, VG
    PAVLENKO, AI
    ZHURNAL PRIKLADNOI KHIMII, 1971, 44 (01) : 183 - +
  • [28] SOLUBILITY IN SYSTEM NH3-H3PO4-H2SO4-H2O
    BABENKO, AM
    KAGANSKII, IM
    JOURNAL OF APPLIED CHEMISTRY OF THE USSR, 1975, 48 (06): : 1440 - 1442
  • [29] THERMOCHEMICAL INVESTIGATIONS OF THE SYSTEMS KCL-KBR-H2O, K2SO4-(NH4)(2)SO4-H2O AND KNO3-NH4NO3-H2O AT 298.15 K
    CHMARZYNSKI, A
    PIEKARSKI, H
    JOURNAL OF THERMAL ANALYSIS, 1995, 45 (04): : 869 - 878
  • [30] (NH4)2Cd3(SO4)4•5H2O
    Swain, Diptikanta
    Row, T. N. Guru
    ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE, 2006, 62 : I226 - I227