Design and fabrication of Low Gain Avalanche Detectors (LGAD): a TCAD simulation study

被引:10
作者
Wu, K. [1 ,2 ]
Zhao, M. [1 ,3 ]
Yang, T. [1 ,2 ]
da Costa, Joao Guimaraes [1 ]
Liang, Z. [1 ,3 ]
Shi, X. [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] State Key Lab Particle Detect & Elect, Beijing 100049, Peoples R China
关键词
Solid state detectors; Timing detectors; Charge transport and multiplication in solid media; Photon detectors for UV; visible and IR photons (solid-state) (PIN diodes; APDs; Si-PMTs; G-APDs; CCDs; EBCCDs; EMCCDs; CMOS imagers; etc); TECHNOLOGY;
D O I
10.1088/1748-0221/15/03/C03008
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Low Gain Avalanche Detectors (LGAD) are silicon sensors with a time resolution better than 20 ps. The ATLAS and CMS experiments are designing LGAD detectors to address the pile-up challenge at the High Luminosity-Large Hadron Collider (HL-LHC). The Institute of High Energy Physics (IHEP) High-Granularity Timing Detector group has recently developed its first version of LGAD sensors. The LGAD structure was designed using Technology Computer-Aided Design (TCAD) simulations and optimized to obtain a high breakdown voltage and ideal gain. The n-type Junction Termination Extension (N-JTE) zone is a critical structure to guarantee a high breakdown voltage. The gain layer is optimized for an ideal gain factor and hence good time resolution. The optimized LGAD sensor has a gain higher than six and a breakdown voltage higher than 400V.
引用
收藏
页数:13
相关论文
共 15 条
[1]  
ATLAS collaboration, 2018, Tech. Rep. CERN-LHCC-2018-023
[2]  
Baliga B. J., 2010, Fundamentals of power semiconductor devices
[3]   50 μm thin Low Gain Avalanche Detectors (LGAD) for timing applications [J].
Carulla, M. ;
Doblas, A. ;
Flores, D. ;
Galloway, Z. ;
Hidalgo, S. ;
Kramberger, G. ;
Luce, Z. ;
Mandic, I. ;
Mazza, S. ;
Merlos, A. ;
Pellegrini, G. ;
Quirion, D. ;
Rodriguez, R. ;
Sadrozinski, H. F. -W. ;
Seiden, A. ;
Zhao, Y. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2019, 924 (373-379) :373-379
[4]  
*CMS COLL, 2017, CERNLHCC2017027 CMS
[5]   TCAD simulation of Low Gain Avalanche Detectors [J].
Dalal, Ranjeet ;
Jain, Geetika ;
Bhardwaj, Ashutosh ;
Ranjan, Kirti .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 836 :113-121
[6]   Design and TCAD simulation of double-sided pixelated low gain avalanche detectors [J].
Dalla Betta, Gian-Franco ;
Pancheri, Lucio ;
Boscardin, Maurizio ;
Paternoster, Giovanni ;
Piemonte, Claudio ;
Cartiglia, Nicolo ;
Cenna, Francesca ;
Bruzzi, Mara .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2015, 796 :154-157
[7]   Design and fabrication of an optimum peripheral region for low gain avalanche detectors [J].
Fernandez-Martinez, Pablo ;
Flores, D. ;
Hidalgo, S. ;
Greco, V. ;
Merlos, A. ;
Pellegrini, G. ;
Quirion, D. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 821 :93-100
[8]   Radiation resistant LGAD design [J].
Ferrero, M. ;
Arcidiacono, R. ;
Barozzi, M. ;
Boscardin, M. ;
Cartiglia, N. ;
Dalla Betta, G. F. ;
Galloway, Z. ;
Mandurrino, M. ;
Mazza, S. ;
Paternoster, G. ;
Ficorella, F. ;
Pancheri, L. ;
Sadrozinski, H-F W. ;
Siviero, F. ;
Sola, V. ;
Staiano, A. ;
Seiden, A. ;
Tornago, M. ;
Zhao, Y. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2019, 919 :16-26
[9]   Development of a technology for the fabrication of Low-Gain Avalanche Diodes at BNL [J].
Giacomini, Gabriele ;
Chen, Wei ;
Lanni, Francesco ;
Tricoli, Alessandro .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2019, 934 :52-57
[10]   Comparison of radiation hardness of P-in-N, N-in-N, and N-in-P silicon pad detectors [J].
Lozano, M ;
Pellegrini, G ;
Fleta, C ;
Loderer, C ;
Rafí, JM ;
Ullán, M ;
Campabadal, F ;
Martínez, C ;
Key, M ;
Casse, G ;
Allport, P .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2005, 52 (05) :1468-1473