A NOTE ON GROUPS WITH A FINITE NUMBER OF PAIRWISE PERMUTABLE SEMINORMAL SUBGROUPS

被引:0
|
作者
Trofimuk, Alexander [1 ]
机构
[1] Francisk Skorina Gomel State Univ, Dept Math & Programming Technol, Gomel, BELARUS
关键词
finite group; residual; seminormal subgroups; product of subgroups; derived subgroup;
D O I
10.22108/ijgt.2021.119299.1575
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup A of a group G is called seminormal in G, if there exists a subgroup B such that G = AB and AX is a subgroup of G for every subgroup X of B. The group G = G(1)G(2)center dot center dot center dot G(n) with pairwise permutable subgroups G(1),...,G(n) such that G(i) and G(j) are seminormal in G(i)G(j) for any i; j is an element of {1,...,n}, i not equal j, is studied. In particular, we prove that if G(i) is an element of f for all i, then G(f) <= (G '')(n), where F is a saturated formation and u subset of f. Here n and u are the formations of all nilpotent and supersoluble groups respectively, the f-residual G(f) of G is the intersection of all those normal subgroups N of G for which G=N is an element of f.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [31] Finite Groups with Hereditarily G-Permutable Minimal Subgroups
    Kamornikov, S. F.
    Tyutyanov, V. N.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 321 (SUPPL 1) : S101 - S108
  • [32] On two open problems of the theory of permutable subgroups of finite groups
    Hu, Bin
    Huang, Jianhong
    Skiba, Alexander N.
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 94 (3-4): : 477 - 491
  • [33] FINITE GROUPS WITH HEREDITARILY G-PERMUTABLE SCHMIDT SUBGROUPS
    Ballester-Bolinches, A.
    Kamornikov, S. F.
    Perez-calabuig, V.
    Tyutyanov, V. N.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (03) : 522 - 528
  • [34] Prefactorized subgroups in pairwise mutually permutable products
    A. Ballester-Bolinches
    J. C. Beidleman
    H. Heineken
    M. C. Pedraza-Aguilera
    Annali di Matematica Pura ed Applicata, 2013, 192 : 1043 - 1057
  • [35] Prefactorized subgroups in pairwise mutually permutable products
    Ballester-Bolinches, A.
    Beidleman, J. C.
    Heineken, H.
    Pedraza-Aguilera, M. C.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2013, 192 (06) : 1043 - 1057
  • [36] On finite groups for which the lattice of S-permutable subgroups is distributive
    Skiba, Alexander N.
    ARCHIV DER MATHEMATIK, 2017, 109 (01) : 9 - 17
  • [37] Finite groups with hereditarily G-permutable minimal subgroups.
    Kamornikov, S. F.
    Tyutyanov, V. N.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2023, 29 (01): : 102 - 110
  • [38] A NOTE ON SOLITARY SUBGROUPS OF FINITE GROUPS
    Esteban-Romero, R.
    Liriano, Orieta
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (07) : 2945 - 2952
  • [39] On finite groups for which the lattice of S-permutable subgroups is distributive
    Alexander N. Skiba
    Archiv der Mathematik, 2017, 109 : 9 - 17
  • [40] FINITE GROUPS WITH S-PERMUTABLE n-MAXIMAL SUBGROUPS
    Qian, Guohua
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (12) : 5183 - 5194