A NOTE ON GROUPS WITH A FINITE NUMBER OF PAIRWISE PERMUTABLE SEMINORMAL SUBGROUPS

被引:0
作者
Trofimuk, Alexander [1 ]
机构
[1] Francisk Skorina Gomel State Univ, Dept Math & Programming Technol, Gomel, BELARUS
关键词
finite group; residual; seminormal subgroups; product of subgroups; derived subgroup;
D O I
10.22108/ijgt.2021.119299.1575
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup A of a group G is called seminormal in G, if there exists a subgroup B such that G = AB and AX is a subgroup of G for every subgroup X of B. The group G = G(1)G(2)center dot center dot center dot G(n) with pairwise permutable subgroups G(1),...,G(n) such that G(i) and G(j) are seminormal in G(i)G(j) for any i; j is an element of {1,...,n}, i not equal j, is studied. In particular, we prove that if G(i) is an element of f for all i, then G(f) <= (G '')(n), where F is a saturated formation and u subset of f. Here n and u are the formations of all nilpotent and supersoluble groups respectively, the f-residual G(f) of G is the intersection of all those normal subgroups N of G for which G=N is an element of f.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 19 条
[1]   ON THE SUPERSOLVABILITY OF FINITE-GROUPS [J].
ASAAD, M ;
SHAALAN, A .
ARCHIV DER MATHEMATIK, 1989, 53 (04) :318-326
[2]  
Ballester-Bolinches A, 2009, ALGEBRA DISCRET MATH, P1
[3]   On pairwise mutually permutable products [J].
Ballester-Bolinches, A. ;
Beidleman, J. C. ;
Heineken, H. ;
Pedraza-Aguilera, M. C. .
FORUM MATHEMATICUM, 2009, 21 (06) :1081-1090
[4]  
Ballester-Bolinches A., 2010, DEGRUYTER EXPOSITION, V53
[5]  
Ballester-Bolinches A., 2006, CLASSES FINITE GROUP
[6]  
Bray H. G., 1982, NILPOTENT SOLUBLE
[7]  
Carocca A., 1999, LONDON MATH SOC LECT, V260, P195
[8]  
Carocca A, 1992, HOKKAIDO MATH J, V21, P395, DOI DOI 10.14492/hokmj/1381413718
[9]  
DOERK K, 1992, FINITE SOLUBLE GROUP
[10]   Finite Groups with Seminormal Sylow Subgroups [J].
Guo, Wen Bin .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (10) :1751-1757