A NOTE ON GROUPS WITH A FINITE NUMBER OF PAIRWISE PERMUTABLE SEMINORMAL SUBGROUPS

被引:0
|
作者
Trofimuk, Alexander [1 ]
机构
[1] Francisk Skorina Gomel State Univ, Dept Math & Programming Technol, Gomel, BELARUS
关键词
finite group; residual; seminormal subgroups; product of subgroups; derived subgroup;
D O I
10.22108/ijgt.2021.119299.1575
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup A of a group G is called seminormal in G, if there exists a subgroup B such that G = AB and AX is a subgroup of G for every subgroup X of B. The group G = G(1)G(2)center dot center dot center dot G(n) with pairwise permutable subgroups G(1),...,G(n) such that G(i) and G(j) are seminormal in G(i)G(j) for any i; j is an element of {1,...,n}, i not equal j, is studied. In particular, we prove that if G(i) is an element of f for all i, then G(f) <= (G '')(n), where F is a saturated formation and u subset of f. Here n and u are the formations of all nilpotent and supersoluble groups respectively, the f-residual G(f) of G is the intersection of all those normal subgroups N of G for which G=N is an element of f.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [1] ON THE SUPERSOLUBILITY OF A FINITE GROUP FACTORIZED INTO PAIRWISE PERMUTABLE SEMINORMAL SUBGROUPS
    Trofimuk, Alexander
    COLLOQUIUM MATHEMATICUM, 2021, 164 (02) : 175 - 183
  • [2] The Supersolvable Residual of a Finite Group Factorized by Pairwise Permutable Seminormal Subgroups
    A. A. Trofimuk
    Algebra and Logic, 2021, 60 : 207 - 216
  • [3] The Supersolvable Residual of a Finite Group Factorized by Pairwise Permutable Seminormal Subgroups
    Trofimuk, A. A.
    ALGEBRA AND LOGIC, 2021, 60 (03) : 207 - 216
  • [4] ON SEMINORMAL SUBGROUPS OF FINITE GROUPS
    Ballester-Bolinches, A.
    Beidleman, J. C.
    Perez-Calabuig, V.
    Ragland, M. F.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (02) : 419 - 427
  • [5] Finite groups with seminormal Sylow subgroups
    Wen Bin Guo
    Acta Mathematica Sinica, English Series, 2008, 24 : 1751 - 1757
  • [6] -permutable subgroups of finite groups
    Heliel, A. A.
    Ballester-Bolinches, A.
    Esteban-Romero, R.
    Almestady, M. O.
    MONATSHEFTE FUR MATHEMATIK, 2016, 179 (04): : 523 - 534
  • [7] Finite Groups with Seminormal Sylow Subgroups
    Wen Bin GUO Department of Mathematics
    Acta Mathematica Sinica(English Series), 2008, 24 (10) : 1751 - 1757
  • [8] Finite groups with seminormal Schmidt subgroups
    Knyagina, V. N.
    Monakhov, V. S.
    ALGEBRA AND LOGIC, 2007, 46 (04) : 244 - 249
  • [9] Finite groups with seminormal Schmidt subgroups
    V. N. Knyagina
    V. S. Monakhov
    Algebra and Logic, 2007, 46 : 244 - 249
  • [10] Finite Groups with Seminormal Sylow Subgroups
    Guo, Wen Bin
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (10) : 1751 - 1757