A Martingale approach to metastability

被引:35
作者
Beltran, J. [1 ,2 ]
Landim, C. [3 ,4 ]
机构
[1] IMCA, Lima 12, Peru
[2] PUCP, Lima 100, Peru
[3] IMPA, BR-22460 Rio De Janeiro, Brazil
[4] Univ Rouen, CNRS UMR 6085, St E, F-76801 St Etienne, France
关键词
Metastability; Mixing times; Markov processes; REVERSIBLE MARKOV-CHAINS; STOCHASTIC DYNAMICS; POLYMER; MODELS;
D O I
10.1007/s00440-014-0549-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We presented in Beltran and Landim ( J Stat Phys 140:1065-1114, 2010) Beltran and Landim (J Stat Phys 149:598-618, 2012) an approach to derive the metastable behavior of continuous-time Markov chains. We assumed in these articles that the Markov chains visit points in the time scale in which it jumps among the metastable sets. We replace this condition here by assumptions on the mixing times and on the relaxation times of the chains reflected at the boundary of the metastable sets.
引用
收藏
页码:267 / 307
页数:41
相关论文
共 25 条
[1]   Tunneling and Metastability of Continuous Time Markov Chains II, the Nonreversible Case [J].
Beltran, J. ;
Landim, C. .
JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (04) :598-618
[2]   Metastability of reversible finite state Markov processes [J].
Beltran, J. ;
Landim, C. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (08) :1633-1677
[3]   Metastability of reversible condensed zero range processes on a finite set [J].
Beltran, J. ;
Landim, C. .
PROBABILITY THEORY AND RELATED FIELDS, 2012, 152 (3-4) :781-807
[4]   Tunneling and Metastability of Continuous Time Markov Chains [J].
Beltran, J. ;
Landim, C. .
JOURNAL OF STATISTICAL PHYSICS, 2010, 140 (06) :1065-1114
[5]  
Beltran J., 2014, ANN I H POI IN PRESS
[6]  
Bianchi A., 2011, ARXIV11031143
[7]   POINTWISE ESTIMATES AND EXPONENTIAL LAWS IN METASTABLE SYSTEMS VIA COUPLING METHODS [J].
Bianchi, Alessandra ;
Bovier, Anton ;
Ioffe, Dmitry .
ANNALS OF PROBABILITY, 2012, 40 (01) :339-371
[8]  
Billingsley P., PROBABILITY STAT
[9]   Metastability and low lying spectra in reversible Markov chains [J].
Bovier, A ;
Eckhoff, M ;
Gayrard, V ;
Klein, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 228 (02) :219-255
[10]   Metastability in stochastic dynamics of disordered mean-field models [J].
Bovier, A ;
Eckhoff, M ;
Gayrard, V ;
Klein, M .
PROBABILITY THEORY AND RELATED FIELDS, 2001, 119 (01) :99-161