Carbon nanotube bundles self-assembled in double helix microstructures

被引:16
作者
Cervantes-Sodi, Felipe [1 ]
Vilatela, Juan J. [2 ]
Jimenez-Rodriguez, Jose A. [3 ]
Reyes-Gutierrez, Lucio G. [3 ]
Rosas-Melendez, Samuel [1 ]
Iniguez-Rabago, Agustin [1 ]
Ballesteros-Villarreal, Monica [1 ]
Palacios, Eduardo [4 ]
Reiband, Gerd [3 ]
Terrones, Mauricio [5 ,6 ,7 ]
机构
[1] Univ Iberoamer, Dept Fis & Matemat, Lomas De Santa Fe 01219, DF, Mexico
[2] ETS Ingenieros Caminos, IMDEA Mat Inst, Madrid 28040, Spain
[3] Grp JUMEX, Ecatepec De Morelos 55340, Estado De Mexic, Mexico
[4] Inst Mexicano Petr, Lab Microscopia Elect Ultra Alta Resoluc, San Bartolo Atepehuacan 07730, DF, Mexico
[5] Penn State Univ, Dept Phys, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[6] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
[7] Shinshu Univ, Res Ctr Exot Nanocarbons JST, Nagano 3808553, Japan
基金
美国国家科学基金会;
关键词
HELICALLY COILED CAGE; GROWTH-MECHANISM; DECOMPOSITION; NANOCOILS;
D O I
10.1016/j.carbon.2012.03.042
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Double helix microstructures consisting of two parallel strands, each composed of hundreds of multiwalled carbon nanotubes (MWCNTs) are synthesised by chemical vapour deposition (CVD) of ferrocene/toluene vapours on thermochemically treated metal substrates, such as steel, Cu, Al and W. The thermochemical treatment produces a thin and brittle layer of SiOx. During the CVD process, carbon nanotubes (CNT) grow adhered to this layer, and as growth progresses, small SiOx microparticles detach from the substrate, directing the helical development of the growing MWCNTs double strands. This growth model for the helical microstructures is compared in the manuscript with models previously reported for coiled carbon fibres grown in the gas phase. A unique aspect of these double helices when they are composed of carbon nanotubes is that they grow on top of a forest of aligned CNTs. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3688 / 3693
页数:6
相关论文
共 26 条
[1]   ELECTRONIC-STRUCTURE OF HELICALLY COILED CAGE OF GRAPHITIC CARBON [J].
AKAGI, K ;
TAMURA, R ;
TSUKADA, M ;
ITOH, S ;
IHARA, S .
PHYSICAL REVIEW LETTERS, 1995, 74 (12) :2307-2310
[2]   NUCLEATION AND GROWTH OF CARBON DEPOSITS FROM NICKEL CATALYZED DECOMPOSITION OF ACETYLENE [J].
BAKER, RTK ;
BARBER, MA ;
WAITE, RJ ;
HARRIS, PS ;
FEATES, FS .
JOURNAL OF CATALYSIS, 1972, 26 (01) :51-&
[3]   Viscous State Effect on the Activity of Fe Nanocatalysts [J].
Cervantes-Sodi, Felipe ;
McNicholas, Thomas P. ;
Simmons, Jay G., Jr. ;
Liu, Jie ;
Csanyi, Gabor ;
Ferrari, Andrea C. ;
Curtarolo, Stefano .
ACS NANO, 2010, 4 (11) :6950-6956
[4]   High-yield synthesis of carbon nanocoils on stainless steel [J].
Chang, Neng-Kai ;
Chang, Shuo-Hung .
CARBON, 2008, 46 (07) :1106-1109
[5]   Mechanics of a carbon nanocoil [J].
Chen, XQ ;
Zhang, SL ;
Dikin, DA ;
Ding, WQ ;
Ruoff, RS ;
Pan, LJ ;
Nakayama, Y .
NANO LETTERS, 2003, 3 (09) :1299-1304
[6]   Self-oriented regular arrays of carbon nanotubes and their field emission properties [J].
Fan, SS ;
Chapline, MG ;
Franklin, NR ;
Tombler, TW ;
Cassell, AM ;
Dai, HJ .
SCIENCE, 1999, 283 (5401) :512-514
[7]   Growth and microstructure of catalytically produced coiled carbon nanotubes [J].
Hernadi, K ;
Thiên-Nga, L ;
Forró, L .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (50) :12464-12468
[8]   Surface diffusion:: The low activation energy path for nanotube growth -: art. no. 036101 [J].
Hofmann, S ;
Csányi, G ;
Ferrari, AC ;
Payne, MC ;
Robertson, J .
PHYSICAL REVIEW LETTERS, 2005, 95 (03)
[9]   HELICALLY COILED CAGE FORMS OF GRAPHITIC CARBON [J].
IHARA, S ;
ITOH, S ;
KITAKAMI, J .
PHYSICAL REVIEW B, 1993, 48 (08) :5643-5647
[10]   A GROWTH-MECHANISM OF REGULARLY COILED CARBON-FIBERS THROUGH ACETYLENE PYROLYSIS [J].
KAWAGUCHI, M ;
NOZAKI, K ;
MOTOJIMA, S ;
IWANAGA, H .
JOURNAL OF CRYSTAL GROWTH, 1992, 118 (3-4) :309-313