Mechanism of negative strain rate sensitivity in metallic glass film

被引:28
作者
Sahu, Bibhu Prasad [1 ]
Dutta, Amlan [1 ]
Mitra, Rahul [1 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Met & Mat Engn, Kharagpur 721302, W Bengal, India
关键词
Metallic glass; Nanoindentation; Strain rate sensitivity; Creep; Molecular dynamics simulation; NANOINDENTATION CREEP-BEHAVIOR; SERRATED FLOW; PLASTIC-DEFORMATION; THIN-FILMS; CU; DYNAMICS; EVOLUTION; RANGE; NANOCRYSTALLINE; MICROSTRUCTURE;
D O I
10.1016/j.jallcom.2019.01.024
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The observation of negative strain rate sensitivity during nanoindentation is a common, yet poorly understood phenomenon in metallic glasses. In this study, a combination of experimental investigation and atomistic simulation has been employed to understand the mechanism behind this perplexing effect. The results suggest that the negative strain rate sensitivity arises out of the influence of a slow time-dependent relaxation process during the driven deformation at a controlled rate. By complementing the experimental outcome by simulation results, it is possible to show that this unification of the rate-driven and relaxation mechanisms is the consequence of their overlapping timescales. In addition, we demonstrate that by using the numerical results of simulated nanoindentation, it is possible to calculate the size and activation volume of the shear transformation zone, which is otherwise difficult using only experimental data in the regime of negative strain rate sensitivity. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:488 / 499
页数:12
相关论文
共 50 条
[31]   Enhanced strain rate sensitivity of Zr-based bulk metallic glasses subjected to high pressure torsion [J].
Boltynjuk, E. V. ;
Gunderov, D. V. ;
Ubyivovk, E. V. ;
Monclus, M. A. ;
Yang, L. W. ;
Molina-Aldareguia, J. M. ;
Tyurin, A. I. ;
Kilmametov, A. R. ;
Churakova, A. A. ;
Churyumov, A. Yu. ;
Valiev, R. Z. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 747 :595-602
[32]   Strain rate sensitivity and deformation mechanism of nano-lamellar γ-Ni/Ni5Zr eutectic at room temperature [J].
Dutta, Anushree ;
Das, Jayanta .
JOURNAL OF MATERIALS RESEARCH, 2020, 35 (20) :2777-2788
[33]   Effect of strain rate and temperature on the plastic deformation behaviour of a bulk metallic glass composite [J].
Singh, P. S. ;
Narayan, R. L. ;
Sen, Indrani ;
Hofmann, D. C. ;
Ramamurty, U. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 534 :476-484
[34]   High strain rate in situ micropillar compression of a Zr-based metallic glass [J].
Ramachandramoorthy, Rajaprakash ;
Yang, Fan ;
Casari, Daniele ;
Stolpe, Moritz ;
Jain, Manish ;
Schwiedrzik, Jakob ;
Michler, Johann ;
Kruzic, Jamie J. ;
Best, James P. .
JOURNAL OF MATERIALS RESEARCH, 2021, 36 (11) :2325-2336
[35]   Strain-rate dependence of hardening and softening in compression of a bulk-metallic glass [J].
Jiang, W. H. ;
Liu, F. X. ;
Jiang, F. ;
Qiu, K. Q. ;
Choo, H. ;
Liaw, P. K. .
JOURNAL OF MATERIALS RESEARCH, 2007, 22 (10) :2655-2658
[36]   Global and local strain rate sensitivity of bimodal Al-laminates produced by accumulative roll bonding [J].
Ruppert, Mathis ;
Schunk, Christopher ;
Hausmann, Daniel ;
Hoeppel, Heinz Werner ;
Goeken, Mathias .
ACTA MATERIALIA, 2016, 103 :643-650
[37]   Strain rate sensitivity of a high strain rate superplastic TiNp/2014 Al composite [J].
Hu, H. E. ;
Zhen, L. ;
Imai, T. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2010, 210 (05) :734-740
[38]   Variation of strain rate sensitivity with grain size in Cr and other body-centred cubic metals [J].
Wu, D. ;
Wang, X. L. ;
Nieh, T. G. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (17)
[39]   Competition between shear band nucleation and propagation across rate-dependent flow transitions in a model metallic glass [J].
Harris, Matthew B. ;
Watts, Lars S. ;
Homer, Eric R. .
ACTA MATERIALIA, 2016, 111 :273-282
[40]   Dependence of strain rate sensitivity upon deformed microstructures in nanocrystalline Cu [J].
Huang, P. ;
Wang, F. ;
Xu, M. ;
Xu, K. W. ;
Lu, T. J. .
ACTA MATERIALIA, 2010, 58 (15) :5196-5205