GaAs quantum dot solar cell under concentrated radiation

被引:8
作者
Sablon, K. [1 ]
Li, Y. [2 ]
Vagidov, N. [2 ,3 ]
Mitin, V. [2 ]
Little, J. W. [1 ]
Hier, H. [1 ]
Sergeev, A. [1 ,2 ]
机构
[1] US Army Res Lab, Adelphi, MD 20783 USA
[2] SUNY Buffalo, EE Dept, Buffalo, NY 14260 USA
[3] US Air Force Res Lab, Albuquerque, NM 87117 USA
基金
美国国家科学基金会;
关键词
EFFICIENCY; SUNS;
D O I
10.1063/1.4928669
中图分类号
O59 [应用物理学];
学科分类号
摘要
Effects of concentrated solar radiation on photovoltaic performance are investigated in well-developed GaAs quantum dot (QD) solar cells with 1-Sun efficiencies of 18%-19%. In these devices, the conversion processes are enhanced by nanoscale potential barriers and/or AlGaAs atomically thin barriers around QDs, which prevent photoelectron capture to QDs. Under concentrated radiation, the short circuit current increases proportionally to the concentration and the open circuit voltage shows the logarithmic increase. In the range up to hundred Suns, the contributions of QDs to the photocurrent are proportional to the light concentration. The ideality factors of 1.1-1.3 found from the VOC-Sun characteristics demonstrate effective suppression of recombination processes in barrier-separated QDs. The conversion efficiency shows the wide maximum in the range of 40-90 Suns and reaches 21.6%. Detailed analysis of I-V-Sun characteristics shows that at low intensities, the series resistance decreases inversely proportional to the concentration and, at similar to 40 Suns, reaches the plateau determined mainly by the front contact resistance. Improvement of contact resistance would increase efficiency to above 24% at thousand Suns. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 30 条
[1]   A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns [J].
Algora, C ;
Ortiz, E ;
Rey-Stolle, I ;
Díaz, V ;
Peña, R ;
Andreev, VM ;
Khvostikov, VP ;
Rumyantsev, VD .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (05) :840-844
[2]  
[Anonymous], P 34 IEEE PHOT SPEC
[3]   Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell [J].
Antolin, E. ;
Marti, A. ;
Farmer, C. D. ;
Linares, P. G. ;
Hernandez, E. ;
Sanchez, A. M. ;
Ben, T. ;
Molina, S. I. ;
Stanley, C. R. ;
Luque, A. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (06)
[4]   Suppression of thermal carrier escape and efficient photo-carrier generation by two-step photon absorption in InAs quantum dot intermediate-band solar cells using a dot-in-well structure [J].
Asahi, S. ;
Teranishi, H. ;
Kasamatsu, N. ;
Kada, T. ;
Kaizu, T. ;
Kita, T. .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (06)
[5]   The promise and challenge of nanostructured solar cells [J].
Beard, Matthew C. ;
Luther, Joseph M. ;
Nozik, Arthur J. .
NATURE NANOTECHNOLOGY, 2014, 9 (12) :951-954
[6]   Analysis of InAs/GaAs quantum dot solar cells using Suns-Voc measurements [J].
Beattie, N. S. ;
Zoppi, G. ;
See, P. ;
Farrer, I. ;
Duchamp, M. ;
Morrison, D. J. ;
Miles, R. W. ;
Ritchie, D. A. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 130 :241-245
[7]   CONCENTRATION-DEPENDENCE OF ABSORPTION-COEFFICIENT FOR N-TYPE AND P-TYPE GAAS BETWEEN 1.3 AND 1.6 EV [J].
CASEY, HC ;
SELL, DD ;
WECHT, KW .
JOURNAL OF APPLIED PHYSICS, 1975, 46 (01) :250-257
[8]   Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots [J].
Ellingson, RJ ;
Beard, MC ;
Johnson, JC ;
Yu, PR ;
Micic, OI ;
Nozik, AJ ;
Shabaev, A ;
Efros, AL .
NANO LETTERS, 2005, 5 (05) :865-871
[9]   Solar cell efficiency tables (Version 45) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm ;
Dunlop, Ewan D. .
PROGRESS IN PHOTOVOLTAICS, 2015, 23 (01) :1-9
[10]   Origin of Nanoscale Variations in Photoresponse of an Organic Solar Cell [J].
Hamadani, Behrang H. ;
Jung, Suyong ;
Haney, Paul M. ;
Richter, Lee J. ;
Zhitenev, Nikolai B. .
NANO LETTERS, 2010, 10 (05) :1611-1617