Improved Thermal Stability of Lithium-Rich Layered Oxide by Fluorine Doping

被引:25
作者
Kapylou, Andrei [1 ]
Song, Jay Hyok [1 ]
Missiul, Aleksandr [1 ]
Ham, Dong Jin [2 ]
Kim, Dong Han [2 ]
Moon, San [2 ]
Park, Jin Hwan [2 ]
机构
[1] Samsung SDI Co Ltd, Battery R&D Ctr, Suwon, Gyeonggi Do, South Korea
[2] Samsung Adv Inst Technol, Energy Lab, Suwon, Gyeonggi Do, South Korea
关键词
doping; electrochemistry; fluorine; layered compounds; lithium; MANGANESE SPINEL OXIDES; CATHODE MATERIALS; STRUCTURAL-CHANGES; HIGH-VOLTAGE; ELECTROCHEMICAL PERFORMANCE; COMPOSITE CATHODES; ION BATTERIES; HIGH-CAPACITY; ELECTRODES M; DECOMPOSITION;
D O I
10.1002/cphc.201700927
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The thermal stability of lithium-rich layered oxide with the composition Li(Li1/6Ni1/6Co1/6Mn1/2)O2-xFx (x=0.00 and 0.05) is evaluated for use as a cathode material in lithium-ion batteries. Thermogravimetric analysis, evolved gas analysis, and differential scanning calorimetry show that, upon fluorine doping, degradation of the lithium-rich layered oxides commences at higher temperatures and the exothermic reaction is suppressed. Hot box tests also reveal that the prismatic cell with the fluorine-doped powder does not explode, whereas that with the undoped one explodes at about 135 degrees C with a sudden temperature increase. XRD analysis indicates that fluorine doping imparts the lithium-rich layered oxide with better thermal stability by mitigating oxygen release at elevated temperatures that cause an exothermic reaction with the electrolyte. The origin of the reduced oxygen release from the fluorinated lithium-rich layered oxide is also discussed.
引用
收藏
页码:116 / 122
页数:7
相关论文
共 55 条
  • [1] Thermal modeling and design considerations of lithium-ion batteries
    Al Hallaj, S
    Maleki, H
    Hong, JS
    Selman, JR
    [J]. JOURNAL OF POWER SOURCES, 1999, 83 (1-2) : 1 - 8
  • [2] Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies
    Al-Alawi, Baha M.
    Bradley, Thomas H.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 21 : 190 - 203
  • [3] Thermal behavior of Li1-yNiO2 and the decomposition mechanism
    Arai, H
    Okada, S
    Sakurai, Y
    Yamaki, J
    [J]. SOLID STATE IONICS, 1998, 109 (3-4) : 295 - 302
  • [4] Thermal reactions between delithiated lithium nickelate and electrolyte solutions
    Arai, H
    Tsuda, M
    Saito, K
    Hayashi, M
    Sakurai, Y
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (04) : A401 - A406
  • [5] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [6] Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2
    Armstrong, A. Robert
    Holzapfel, Michael
    Novak, Petr
    Johnson, Christopher S.
    Kang, Sun-Ho
    Thackeray, Michael M.
    Bruce, Peter G.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) : 8694 - 8698
  • [7] Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy
    Bak, Seong-Min
    Hu, Enyuan
    Zhou, Yongning
    Yu, Xiqian
    Senanayake, Sanjaya D.
    Cho, Sung-Jin
    Kim, Kwang-Bum
    Chung, Kyung Yoon
    Yang, Xiao-Qing
    Nam, Kyung-Wan
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (24) : 22594 - 22601
  • [8] Magnetic order in perovskite-related SrFeO2F
    Berry, F. J.
    Heap, R.
    Helgason, O.
    Moore, E. A.
    Shim, S.
    Slater, P. R.
    Thomas, M. F.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (21)
  • [9] On safety of lithium-ion cells
    Biensan, P
    Simon, B
    Pérès, JP
    de Guibert, A
    Broussely, M
    Bodet, JM
    Perton, F
    [J]. JOURNAL OF POWER SOURCES, 1999, 81 : 906 - 912
  • [10] Study of Thermal Decomposition of Li1-x(Ni1/3Mn1/3Co1/3)0.9O2 Using In-Situ High-Energy X-Ray Diffraction
    Chen, Zonghai
    Ren, Yang
    Lee, Eungje
    Johnson, Christopher
    Qin, Yan
    Amine, Khalil
    [J]. ADVANCED ENERGY MATERIALS, 2013, 3 (06) : 729 - 736