Some analytical solutions for fluid flow in and around a single fracture in a porous formation based on singular integral equation

被引:1
作者
Pouya, A. [1 ]
Vu, M. N. [2 ,3 ]
Pham, D. T. [4 ]
Trieu, H. T. [4 ]
Nguyen, S. T. [5 ]
To, Q. D. [5 ]
Nguyen-Thoi, T. [2 ,3 ]
机构
[1] Univ Paris Est, Lab Navier, IFSTTAR, ENPC,UMR 8205,CNRS, F-77455 Marne La Vallee, France
[2] Ton Duc Thang Univ, Inst Computat Sci, Div Construct Computat, Ho Chi Minh City, Vietnam
[3] Ton Duc Thang Univ, Fac Civil Engn, Ho Chi Minh City, Vietnam
[4] Hanoi Univ Min & Geol, Dept Civil Engn, Hanoi, Vietnam
[5] Duy Tan Univ, Inst Res & Dev, Da Nang, Vietnam
关键词
Fractured porous media; BIE; Explicit solution; Superconductive; Pressurized fracture; Anisotropic permeability; EFFECTIVE PERMEABILITY; EFFECTIVE CONDUCTIVITY; ELEMENT METHOD; MEDIA; STATE; ROCK; TRANSPORT; PRESSURE; TUNNEL; MATRIX;
D O I
10.1016/j.enganabound.2020.05.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study considers the fluid flow through a porous formation containing discontinuities (fault, fracture, crack, microcrack), which is usually much more conductive than the surrounding matrix. The discontinuity is mathematically represented by a 1D smooth function of curvilinear abscise and physically characterized by its aperture. Fluid flow is assumed to obey Poiseuille's law in the discontinuity and Darcy's law in the parent porous rock. The solution for the fluid potential within a finite fractured porous medium is established under a singular integral equation form. Explicit solutions of flow and pressure field around a superconductive discontinuity within an infinite matrix with an anisotropic permeability, are derived by a development of a singular integral in a conventional Cartesian coordinate system. The solution shows that the fluid flow transported by a single crack only depends on the determinant of permeability tensor of the host rock but not on its components. A numerical simulation is performed to show that this result is also true for the discontinuity with a finite conductivity. The case of pressurized crack is also considered, discussed and compared to available numerical solutions in the literature.
引用
收藏
页码:32 / 40
页数:9
相关论文
共 60 条
[51]   On the effective transport properties of heterogeneous materials [J].
Sy-Tuan Nguyen ;
Duc-Chinh Pham ;
Minh-Ngoc Vu ;
Quy-Dong To .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2016, 104 :75-86
[52]   Effective permeability calculation using boundary element method in naturally fractured reservoirs [J].
Teimoori, A ;
Chen, ZX ;
Rahman, SS ;
Tran, T .
PETROLEUM SCIENCE AND TECHNOLOGY, 2005, 23 (5-6) :693-709
[53]   About the Porous Media Flow Through Circular and Elliptical Anisotropic Inhomogeneities [J].
Veling, E. J. M. .
TRANSPORT IN POROUS MEDIA, 2012, 91 (02) :717-732
[54]   Theoretical predicting of permeability evolution in damaged rock under compressive stress [J].
Vu, M. N. ;
Nguyen, S. T. ;
To, Q. D. ;
Dao, N. H. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2017, 209 (02) :1352-1361
[55]   Modeling of fluid flow through fractured porous media by a single boundary integral equation [J].
Vu, M. N. ;
Nguyen, S. T. ;
Vu, M. H. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2015, 59 :166-171
[56]  
Vu M.N., 2012, THESIS
[57]   A Modified Stress-Displacement Solution for a Pressure Tunnel with a Permeable Liner in an Elastic Porous Medium Based on a New Model [J].
Wang, M. B. ;
Wang, G. .
ROCK MECHANICS AND ROCK ENGINEERING, 2013, 46 (02) :259-268
[58]   VALIDITY OF CUBIC LAW FOR FLUID-FLOW IN A DEFORMABLE ROCK FRACTURE [J].
WITHERSPOON, PA ;
WANG, JSY ;
IWAI, K ;
GALE, JE .
WATER RESOURCES RESEARCH, 1980, 16 (06) :1016-1024
[59]   Theoretical and numerical analyses of pore-fluid flow patterns around and within inclined large cracks and faults [J].
Zhao, Chongbin ;
Hobbs, B. E. ;
Ord, A. ;
Hornby, P. ;
Peng, Shenglin ;
Liu, Liangming .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2006, 166 (02) :970-988
[60]   Effective conductivity of a two-dimensional medium containing elliptical inhomogeneities [J].
Zimmerman, RW .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 452 (1950) :1713-1727