Birkhoff-James orthogonality of linear operators on finite dimensional Banach spaces

被引:70
作者
Sain, Debmalya [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
关键词
Birkhoff-James orthogonality; Linear operators; Norm attainment; Left symmetry of orthogonality;
D O I
10.1016/j.jmaa.2016.10.064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we characterize Birkhoff-James orthogonality of linear operators defined on a finite dimensional real Banach space X. We also explore the left symmetry of Birkhoff-James orthogonality of linear operators defined on X. Using some of the related results proved in this paper, we finally prove that T is an element of L(l(p)(2)) (p >= 2,p not equal infinity) is left symmetric with respect to Birkhoff-James orthogonality if and only if T is the zero operator. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:860 / 866
页数:7
相关论文
共 5 条
[1]   Orthogonality of matrices and some distance problems [J].
Bhatia, R ;
Semrl, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 287 (1-3) :77-85
[2]  
Birkhoff G., 1935, Duke Math. J., V1, P169, DOI DOI 10.1215/S0012-7094-35-00115-6.H17I
[3]   Orthogonality of bounded linear operators [J].
Ghosh, Puja ;
Sain, Debmalya ;
Paul, Kallol .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 500 :43-51
[4]  
JAMES RC, 1947, T AM MATH SOC, V61, P265
[5]  
Saba D., 2013, LINEAR ALGEBRA APPL, V439, P2448