Sensitivity and resilience of ecosystems to climate variability in the semi-arid to hyper-arid areas of Northern China: a case study in the Heihe River Basin

被引:28
作者
You, Nanshan [1 ,2 ]
Meng, Jijun [1 ,2 ]
Zhu, Likai [3 ]
机构
[1] Peking Univ, Coll Urban & Environm Sci, Beijing 100871, Peoples R China
[2] Peking Univ, Key Lab Earth Surface Proc, Minist Educ, Beijing 100871, Peoples R China
[3] Linyi Univ, Shandong Prov Key Lab Water & Soil Conservat & En, Coll Resources & Environm, Linyi 276000, Peoples R China
基金
中国国家自然科学基金;
关键词
Sensitivity; Resilience; Climate variability; NDVI anomalies; MODIS; Heihe River Basin; GLOBAL TERRESTRIAL ECOSYSTEMS; PRIMARY PRODUCTIVITY; CRITICAL TRANSITIONS; NORTHWESTERN CHINA; TIME-SERIES; DROUGHT; VEGETATION; RESPONSES; PRECIPITATION; VULNERABILITY;
D O I
10.1007/s11284-017-1543-3
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Climate variability and climate extremes are important climatic determinants of plant growth, species distribution and net primary productivity. A comprehensively quantitative analysis of the sensitivity and resilience of ecosystems to climate variability is vital to identify which regions and species are most in danger in response to future climate change. Here, we proposed an empirical approach to assess the relative sensitivity and resilience of ecosystems to short-term climate variability in the Heihe River Basin (HRB) which is the second largest inland river basin in the northern China and contains ecosystems of semi-arid, arid and hyper-arid types. Based on the monthly time series of normalized difference vegetation index (NDVI), land surface temperatures (LST) and the ratio of actual evapotranspiration to potential evapotranspiration (AET/PET) derived from MODIS sensor from 2000 to 2013, we developed a multiple linear regressive and autoregressive model to determine the sensitivity of NDVI anomalies to climate variability indicated by monthly LST anomalies (temperature variability) and monthly AET/PET anomalies (water variability). We included 1 month time lag of NDVI anomalies in order to reflect ecosystem resilience. We found that the sensitivity and resilience to climate variability were different in the upper, middle and lower reaches of the HRB. Temperature variability dominantly controlled vegetation anomalies in the upper reach, but water variability was the dominant climatic factor in the middle and lower reaches. The different responses of semi-arid to hyper-arid ecosystems to climate variability depended much on the distinct climatic conditions and diverse vegetation types. Ecosystems in drier condition tended to show higher sensitivity to water variability, and ecosystems with colder climate were likely to be more sensitive to temperature variability. The most sensitive vegetation type to water variability and temperature variability in the HRB was crop and meadow, respectively. Grass had been proved to have the lowest resilience. Our research on the sensitivity and resilience of semi-arid to hyper-arid ecosystems is helpful for formulating and implementing adaptation and mitigation strategies in response to climate change.
引用
收藏
页码:161 / 174
页数:14
相关论文
共 52 条
  • [1] The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink
    Ahlstrom, Anders
    Raupach, Michael R.
    Schurgers, Guy
    Smith, Benjamin
    Arneth, Almut
    Jung, Martin
    Reichstein, Markus
    Canadell, Josep G.
    Friedlingstein, Pierre
    Jain, Atul K.
    Kato, Etsushi
    Poulter, Benjamin
    Sitch, Stephen
    Stocker, Benjamin D.
    Viovy, Nicolas
    Wang, Ying Ping
    Wiltshire, Andy
    Zaehle, Soenke
    Zeng, Ning
    [J]. SCIENCE, 2015, 348 (6237) : 895 - 899
  • [2] A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests
    Allen, Craig D.
    Macalady, Alison K.
    Chenchouni, Haroun
    Bachelet, Dominique
    McDowell, Nate
    Vennetier, Michel
    Kitzberger, Thomas
    Rigling, Andreas
    Breshears, David D.
    Hogg, E. H.
    Gonzalez, Patrick
    Fensham, Rod
    Zhang, Zhen
    Castro, Jorge
    Demidova, Natalia
    Lim, Jong-Hwan
    Allard, Gillian
    Running, Steven W.
    Semerci, Akkin
    Cobb, Neil
    [J]. FOREST ECOLOGY AND MANAGEMENT, 2010, 259 (04) : 660 - 684
  • [3] [Anonymous], 2014, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  • [4] Process-based proxy of oxygen stress surpasses indirect ones in predicting vegetation characteristics
    Bartholomeus, Ruud P.
    Witte, Jan-Philip M.
    van Bodegom, Peter M.
    van Dam, Jos C.
    de Becker, Piet
    Aerts, Rien
    [J]. ECOHYDROLOGY, 2012, 5 (06) : 746 - 758
  • [5] Ecosystem resilience despite large-scale altered hydroclimatic conditions
    Campos, Guillermo E. Ponce
    Moran, M. Susan
    Huete, Alfredo
    Zhang, Yongguang
    Bresloff, Cynthia
    Huxman, Travis E.
    Eamus, Derek
    Bosch, David D.
    Buda, Anthony R.
    Gunter, Stacey A.
    Scalley, Tamara Heartsill
    Kitchen, Stanley G.
    McClaran, Mitchel P.
    McNab, W. Henry
    Montoya, Diane S.
    Morgan, Jack A.
    Peters, Debra P. C.
    Sadler, E. John
    Seyfried, Mark S.
    Starks, Patrick J.
    [J]. NATURE, 2013, 494 (7437) : 349 - 352
  • [6] Europe-wide reduction in primary productivity caused by the heat and drought in 2003
    Ciais, P
    Reichstein, M
    Viovy, N
    Granier, A
    Ogée, J
    Allard, V
    Aubinet, M
    Buchmann, N
    Bernhofer, C
    Carrara, A
    Chevallier, F
    De Noblet, N
    Friend, AD
    Friedlingstein, P
    Grünwald, T
    Heinesch, B
    Keronen, P
    Knohl, A
    Krinner, G
    Loustau, D
    Manca, G
    Matteucci, G
    Miglietta, F
    Ourcival, JM
    Papale, D
    Pilegaard, K
    Rambal, S
    Seufert, G
    Soussana, JF
    Sanz, MJ
    Schulze, ED
    Vesala, T
    Valentini, R
    [J]. NATURE, 2005, 437 (7058) : 529 - 533
  • [7] Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis
    Cong, Nan
    Wang, Tao
    Nan, Huijuan
    Ma, Yuecun
    Wang, Xuhui
    Myneni, Ranga B.
    Piao, Shilong
    [J]. GLOBAL CHANGE BIOLOGY, 2013, 19 (03) : 881 - 891
  • [8] A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover
    De Keersmaecker, Wanda
    Lhermitte, Stef
    Tits, Laurent
    Honnay, Olivier
    Somers, Ben
    Coppin, Pol
    [J]. GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2015, 24 (05): : 539 - 548
  • [9] Multiple Dimensions of Climate Change and Their Implications for Biodiversity
    Garcia, Raquel A.
    Cabeza, Mar
    Rahbek, Carsten
    Araujo, Miguel B.
    [J]. SCIENCE, 2014, 344 (6183) : 486 - +
  • [10] The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia
    Gessner, Ursula
    Naeimi, Vahid
    Klein, Igor
    Kuenzer, Claudia
    Klein, Doris
    Dech, Stefan
    [J]. GLOBAL AND PLANETARY CHANGE, 2013, 110 : 74 - 87