Real interpolation of weighted tent spaces

被引:17
作者
Cao, Jun [1 ]
Chang, Der-Chen [2 ,3 ]
Fu, Zunwei [4 ]
Yang, Dachun [5 ]
机构
[1] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Zhejiang, Peoples R China
[2] Georgetown Univ, Dept Math & Stat, Washington, DC 20057 USA
[3] Fu Jen Catholic Univ, Dept Math, Taipei 242, Taiwan
[4] Linyi Univ, Dept Math, Linyi 276005, Peoples R China
[5] Beijing Normal Univ, Lab Math & Complex Syst, Sch Math Sci, Minist Educ, Beijing 100875, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Real interpolation; tent space; Lorentz space; Hardy space; Muckenhoupt weight; decreasing rearrangement; Hardy inequality; HARDY-SPACES; HP SPACES; OPERATORS;
D O I
10.1080/00036811.2015.1091924
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p is an element of(0, infinity) and w is an element of A(infinity)(R-n) be a Muckenhoupt weight. In this article, the authors study the real interpolation of the weighted tent space T-w(p)(R-+(n+1)). For all w is an element of A(infinity)(R-n), theta is an element of(0, 1), 0 < p(0) < p(1) < infinity and q is an element of(0, infinity], the authors show that (T-w(p0) (R-+(n+1)), T-w(p1) (R-+(n+1)))(theta, q) = T-w(p, q) (R-+(n+1)), where 1/p = 1-theta/p(0) + theta/p(1) and T-w(p, q) (R-+(n+1)) denotes the weighted Lorentz-tent space, which is introduced in this article. As an application, the authors prove a real interpolation result on the weighted Hardy spaces Hp w(Rn) for all p is an element of(0, 1] and w is an element of A(infinity)(R-n), which, when w equivalent to 1, seals a gap existing in the original proof of a corresponding result of Fefferman et al.
引用
收藏
页码:2415 / 2443
页数:29
相关论文
共 43 条
[1]   The Hardy-Lorentz spaces Hp,q(Rn) [J].
Abu-Shammala, Wael ;
Torchinsky, Alberto .
STUDIA MATHEMATICA, 2007, 182 (03) :283-294
[2]   SPACES OF CARLESON MEASURES - DUALITY AND INTERPOLATION [J].
ALVAREZ, J ;
MILMAN, M .
ARKIV FOR MATEMATIK, 1987, 25 (02) :155-174
[3]  
Alvarez J, 1988, LECT NOTES MATH, V1302, P11
[4]  
AMAR E, 1979, B SOC MATH FR, V107, P23
[5]  
Amenta A, 2014, OPER THEORY ADV APPL, V240, P1
[6]  
[Anonymous], 1971, PRINCETON MATH SER
[7]  
[Anonymous], 1979, Dissertations Math.
[8]  
[Anonymous], 1982, Mathematical Notes, DOI DOI 10.1515/9780691222455
[9]  
[Anonymous], 1984, Pure and applied mathematics
[10]  
Bergh J, 2000, MATH SCAND, V87, P22