Criteria for Collapse in the Focusing Nonlinear Schrodinger Equation

被引:0
作者
Duyckaerts, Thomas [1 ]
Roudenko, Svetlana [2 ]
机构
[1] Univ Cergy Pontoise, Dept Math, CNRS, UMR 8088, Cergy Pontoise, France
[2] George Washington Univ, Dept Math, Washington, DC 20052 USA
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C | 2011年 / 1389卷
关键词
Nonlinear Schrodinger equation; collapse; blow up criteria; ground state solutions; 3D; SCATTERING;
D O I
10.1063/1.3636831
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the classical mechanics approach and rigidity type arguments on the variance identity, we obtain several new sufficient criteria for collapse for any L-2-supercritical focusing NLS equation with finite (positive) energy and finite variance initial data, which are different from the classical blow up arguments. In particular, we show that these criteria produce collapsing solutions to the energy-critical NLS equations for some initial data u(0) with E[u(0)] > E[W], where W is the stationary solution to Delta W + W4/N-2 - 0. Furthermore, we prove that the initial data of the form W(x)e(i gamma) vertical bar(x)vertical bar(2) blows up if gamma < 0 and scatters if gamma > 0 in dimension 7 and higher. These collapse criteria are also applicable in the case of the energy-supercritical focusing NLS equation.
引用
收藏
页数:4
相关论文
共 14 条
[1]  
Carreon F., SCATTERING BLOW 2 DI
[2]  
Cazenave T, 2003, Semilinear Schrodinger Equations
[3]   Threshold solutions for the focusing 3D cubic Schrodinger equation [J].
Duyckaerts, Thomas ;
Roudenko, Svetlana .
REVISTA MATEMATICA IBEROAMERICANA, 2010, 26 (01) :1-56
[4]  
Duyckaerts T, 2008, MATH RES LETT, V15, P1233
[5]  
Guevara C., 2011, THESIS ARIZONA STATE
[6]  
HOLMER J, 2007, AMRX APPL MATH RES E, V1
[7]  
Holmer J., ANAL PDE IN PRESS
[8]   A sharp condition for scattering of the radial 3D cubic nonlinear Schrodinger equation [J].
Holmer, Justin ;
Roudenko, Svetlana .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 282 (02) :435-467
[9]   A Class of Solutions to the 3D Cubic Nonlinear Schro "dinger Equation that Blows Up on a Circle [J].
Holmer, Justin ;
Roudenko, Svetlana .
APPLIED MATHEMATICS RESEARCH EXPRESS, 2011, (01) :23-94
[10]   Divergence of Infinite-Variance Nonradial Solutions to the 3D NLS Equation [J].
Holmer, Justin ;
Roudenko, Svetlana .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (05) :878-905