On persymmetric covariance matrices in adaptive detection

被引:5
作者
Pailloux, G. [1 ,2 ]
Forster, P. [2 ]
Ovarlez, J. P. [1 ]
Pascal, F. [3 ]
机构
[1] ONERA DEMR TSI, F-91120 Palaiseau, France
[2] GEA, F-92410 Ville Davray, France
[3] ENS Cachan, SATIE, CNRS, F-94230 Cachan, France
来源
2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12 | 2008年
关键词
adaptive signal detection; parameter estimation; maximum likelihood estimation; covariance matrices; radar detection;
D O I
10.1109/ICASSP.2008.4518107
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In the general area of radar detection, estimation of the clutter covariance matrix is an important point. This matrix commonly exhibits a persymmetric structure: this is the case for instance for active systems using a symmetrically spaced linear array or pulse train. In this context, this paper provides a new Gaussian adaptive detector called the Persymmetric Adaptive Matched Filter (P-AMF). Its theoretical distribution is derived allowing adjustment of the detection threshold for a given Probability of False Alarm (PFA). Simulations results highlight the improvement in term of probability of detection (PD) of the P-AMF in comparison with the classical Adaptive Matched Filter (AMF).
引用
收藏
页码:2305 / +
页数:2
相关论文
共 50 条
  • [41] Adaptive persymmetric detector of generalised likelihood ratio test in homogeneous environment
    Jian, Tao
    He, You
    Liao, Guisheng
    Guan, Jian
    Dong, Yunlong
    IET SIGNAL PROCESSING, 2016, 10 (02) : 91 - 99
  • [42] Space-time adaptive detection for bistatic MIMO system under covariance matrix persymmetry and symmetric spectrum
    Yen, Sheng
    Hao, Chengpeng
    Xu, Da
    Shi, Bo
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7838 - 7842
  • [43] Estimation for the Linear Model With Uncertain Covariance Matrices
    Zachariah, Dave
    Shariati, Nafiseh
    Bengtsson, Mats
    Jansson, Magnus
    Chatterjee, Saikat
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (06) : 1525 - 1535
  • [44] A fast and reliable method for the comparison of covariance matrices
    Ferreira, Tassia
    Marra, Valerio
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 513 (04) : 5438 - 5445
  • [45] Modeling inverse covariance matrices by basis expansion
    Olsen, PA
    Gopinath, RA
    IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 2004, 12 (01): : 37 - 46
  • [46] Estimators of covariance matrices in Msplit(q) estimation
    Wisniewski, Z.
    Zienkiewicz, M. H.
    SURVEY REVIEW, 2021, 53 (378) : 263 - 279
  • [47] ROBUST PROCEDURES FOR TESTING EQUALITY OF COVARIANCE MATRICES
    OBRIEN, PC
    BIOMETRICS, 1992, 48 (03) : 819 - 827
  • [48] Regularized Covariance Estimation for Polarization Radar Detection in Compound Gaussian Sea Clutter
    Xie, Lei
    He, Zishu
    Tong, Jun
    Liu, Tianle
    Li, Jun
    Xi, Jiangtao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [49] A REVIEW OF KERNELS ON COVARIANCE MATRICES FOR BCI APPLICATIONS
    Yger, Florian
    2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2013,
  • [50] l0 Penalized Maximum Likelihood Estimation of Sparse Covariance Matrices
    Fatima, Ghania
    Stoica, Petre
    Babu, Prabhu
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 66 - 70