INDICES OF TREES WITH A PRESCRIBED DIAMETER

被引:9
作者
Simic, Slobodan K. [1 ,3 ]
Zhou, Bo [2 ]
机构
[1] Math Inst SANU, Belgrade 11001, Serbia
[2] S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
[3] Fac Comp Sci, Belgrade 11000, Serbia
基金
中国国家自然科学基金;
关键词
Tree; diameter; spectrum; characteristic polynomial; index;
D O I
10.2298/AADM0702446S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The index of a graph is is the largest eigen value of its adjacency matrix. Let T-n,T-d be the class of trees with n vertices and diameter d. For all integers n and d with 4 <= d <= n - 3 we identify in T-n,T-d the tree with the k-th largest index for all k up to left perpendiculard/2right perpendicular + 1 if d <= n - 4, or for all k up to left perpendiculard/2right perpendicular if d = n - 3.
引用
收藏
页码:446 / 454
页数:9
相关论文
共 12 条
[1]  
[Anonymous], PUBL I MATH BEOGRAD
[2]   Variable neighborhood search for extremal graphs 3. On the largest eigenvalue of color-constrained trees [J].
Cvetkovic, D ;
Simic, S ;
Caporossi, G ;
Hansen, P .
LINEAR & MULTILINEAR ALGEBRA, 2001, 49 (02) :143-160
[3]  
Cvetkovic D., 1995, Spectra of Graphs-Theory and Application, V3rd ed.
[4]  
CVETKOVIC D, 1997, EIGENSPACES GRAPHS
[5]  
CVETKOVIC D, 1990, LINEAR MULTILINEAR A, V28, P3, DOI DOI 10.1080/03081089008818026
[6]  
Hoffman A.J., 1975, Recent advances in Graph Theory, P273
[7]  
Hoffman A.J., 1972, Lecture Notes Math., V303, P165
[8]  
Hofmeister M, 1997, LINEAR ALGEBRA APPL, V260, P43, DOI 10.1016/S0024-3795(96)00249-2
[9]  
Li Qiao, 1979, Acta Mathematicae Applacatae Sinica, V2, P167
[10]  
Lovasz L., 1973, Period. Math. Hung., V3, P175, DOI DOI 10.1007/BF02018473