Semiconcavity results for optimal control problems admitting no singular minimizing controls

被引:26
作者
Cannarsa, P. [1 ]
Rifford, L. [2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Univ Nice Sophia Antipolis, Labo JA Dieudonne, UMR 6621, F-06108 Nice, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2008年 / 25卷 / 04期
关键词
optimal control; semiconcavity; sub-Riemannian geometry;
D O I
10.1016/j.anihpc.2007.07.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Semiconcavity results have generally been obtained for optimal control problems in absence of state constraints. In this paper, we prove the semiconcavity of the value function of an optimal control problem with end-point constraints for which all minimizing controls are supposed to be nonsingular. (C) 2007 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:773 / 802
页数:30
相关论文
共 25 条
  • [1] Agrachev A., 1998, REND SEM MAT U POLIT, V56, P1
  • [2] ON THE SINGULARITIES OF CONVEX-FUNCTIONS
    ALBERTI, G
    AMBROSIO, L
    CANNARSA, P
    [J]. MANUSCRIPTA MATHEMATICA, 1992, 76 (3-4) : 421 - 435
  • [3] [Anonymous], MEM AM MATH SOC
  • [4] [Anonymous], GRADUATE TEXTS MATH
  • [5] [Anonymous], DISCRET CONTINUOUS D
  • [6] [Anonymous], 2004, PROGR NONLINEAR DIFF
  • [7] BELLAICHE A, 1996, SUBRIEMANNIAN GEOMET, P1
  • [8] Cannarsa P, 2000, DISCRETE CONT DYN-A, V6, P975
  • [9] SOME CHARACTERIZATIONS OF OPTIMAL TRAJECTORIES IN CONTROL-THEORY
    CANNARSA, P
    FRANKOWSKA, H
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (06) : 1322 - 1347
  • [10] CONVEXITY PROPERTIES OF THE MINIMUM-TIME FUNCTION
    CANNARSA, P
    SINESTRARI, C
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1995, 3 (03): : 273 - 298