Machine learning versus conventional clinical methods in guiding management of heart failure patients-a systematic review

被引:45
作者
Bazoukis, George [1 ]
Stavrakis, Stavros [2 ]
Zhou, Jiandong [3 ,4 ]
Bollepalli, Sandeep Chandra [5 ]
Tse, Gary [6 ]
Zhang, Qingpeng [3 ,4 ]
Singh, Jagmeet P. [7 ]
Armoundas, Antonis A. [5 ,8 ]
机构
[1] Evangelismos Gen Hosp Athens, Dept Cardiol 2, Athens, Greece
[2] Univ Oklahoma, Hlth Sci Ctr, Oklahoma City, OK USA
[3] City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China
[4] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen, Guangdong, Peoples R China
[5] Massachusetts Gen Hosp, Cardiovasc Res Ctr, 149 13th St, Boston, MA 02129 USA
[6] Li Ka Shing Inst Hlth Sci, Lab Cardiovasc Physiol, Hong Kong, Peoples R China
[7] Massachusetts Gen Hosp, Cardiac Arrhythmia Serv, Div Cardiol, Boston, MA 02114 USA
[8] MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家卫生研究院;
关键词
Machine learning; Heart failure; Deep learning; DISEASE; UPDATE; MODEL;
D O I
10.1007/s10741-020-10007-3
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Machine learning (ML) algorithms "learn" information directly from data, and their performance improves proportionally with the number of high-quality samples. The aim of our systematic review is to present the state of the art regarding the implementation of ML techniques in the management of heart failure (HF) patients. We manually searched MEDLINE and Cochrane databases as well the reference lists of the relevant review studies and included studies. Our search retrieved 122 relevant studies. These studies mainly refer to (a) the role of ML in the classification of HF patients into distinct categories which may require a different treatment strategy, (b) discrimination of HF patients from the healthy population or other diseases, (c) prediction of HF outcomes, (d) identification of HF patients from electronic records and identification of HF patients with similar characteristics who may benefit form a similar treatment strategy, (e) supporting the extraction of important data from clinical notes, and (f) prediction of outcomes in HF populations with implantable devices (left ventricular assist device, cardiac resynchronization therapy). We concluded that ML techniques may play an important role for the efficient construction of methodologies for diagnosis, management, and prediction of outcomes in HF patients.
引用
收藏
页码:23 / 34
页数:12
相关论文
共 33 条
  • [1] Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients
    Ahmad, Tariq
    Lund, Lars H.
    Rao, Pooja
    Ghosh, Rohit
    Warier, Prashant
    Vaccaro, Benjamin
    Dahlstrom, Ulf
    O'Connor, Christopher M.
    Felker, G. Michael
    Desai, Nihar R.
    [J]. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2018, 7 (08):
  • [2] A database for using machine learning and data mining techniques for coronary artery disease diagnosis
    Alizadehsani, R.
    Roshanzamir, M.
    Abdar, M.
    Beykikhoshk, A.
    Khosravi, A.
    Panahiazar, M.
    Koohestani, A.
    Khozeimeh, F.
    Nahavandi, S.
    Sarrafzadegan, N.
    [J]. SCIENTIFIC DATA, 2019, 6 (1)
  • [3] Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction
    Angraal, Suveen
    Mortazavi, Bobak J.
    Gupta, Aakriti
    Khera, Rohan
    Ahmad, Tariq
    Desai, Nihar R.
    Jacoby, Daniel L.
    Masoudi, Frederick A.
    Spertus, John A.
    Krumholz, Harlan M.
    [J]. JACC-HEART FAILURE, 2020, 8 (01) : 12 - 21
  • [4] [Anonymous], 2019, PLOS ONE, DOI DOI 10.1371/JOURNAL.PONE.0219302
  • [5] Benjamin EJ, 2019, CIRCULATION, V139, pE56, DOI [10.1161/CIR.0000000000000659, 10.1161/CIR.0000000000000746]
  • [6] Desai RJ, 2019, JAMA NETW OPEN, V2, DOI [10.1001/jamanetworkopen.2019.18962, 10.1001/jamanetworkopen.2019.10626]
  • [7] Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk
    Dimopoulos, Alexandros C.
    Nikolaidou, Mara
    Felix Caballero, Francisco
    Engchuan, Worrawat
    Sanchez-Niubo, Albert
    Arndt, Holger
    Luis Ayuso-Mateos, Jose
    Maria Haro, Josep
    Chatterji, Somnath
    Georgousopoulou, Ekavi N.
    Pitsavos, Christos
    Panagiotakos, Demosthenes B.
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2018, 18
  • [8] Validation of an echo-Doppler decision model to predict left ventricular filling pressure in patients with heart failure independently of ejection fraction
    Dini, Frank Lloyd
    Ballo, Piercarlo
    Badano, Luigi
    Barbier, Paolo
    Chella, Piersilvio
    Conti, Umberto
    De Tommasi, Salvatore Mario
    Galderisi, Maurizio
    Ghio, Stefano
    Magagnini, Enrico
    Pieroni, Andrea
    Rossi, Andrea
    Rusconi, Cesare
    Temporelli, Pier Luigi
    [J]. EUROPEAN JOURNAL OF ECHOCARDIOGRAPHY, 2010, 11 (08): : 703 - 710
  • [9] Machine Learning: Discovering the Future of Medical Imaging
    Erickson, Bradley J.
    [J]. JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) : 391 - 391
  • [10] Machine learning versus traditional risk stratification methods in acute coronary syndrome: a pooled randomized clinical trial analysis
    Gibson, William J.
    Nafee, Tarek
    Travis, Ryan
    Yee, Megan
    Kerneis, Mathieu
    Ohman, Magnus
    Gibson, C. Michael
    [J]. JOURNAL OF THROMBOSIS AND THROMBOLYSIS, 2020, 49 (01) : 1 - 9