Machine learning versus conventional clinical methods in guiding management of heart failure patients-a systematic review

被引:47
作者
Bazoukis, George [1 ]
Stavrakis, Stavros [2 ]
Zhou, Jiandong [3 ,4 ]
Bollepalli, Sandeep Chandra [5 ]
Tse, Gary [6 ]
Zhang, Qingpeng [3 ,4 ]
Singh, Jagmeet P. [7 ]
Armoundas, Antonis A. [5 ,8 ]
机构
[1] Evangelismos Gen Hosp Athens, Dept Cardiol 2, Athens, Greece
[2] Univ Oklahoma, Hlth Sci Ctr, Oklahoma City, OK USA
[3] City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China
[4] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen, Guangdong, Peoples R China
[5] Massachusetts Gen Hosp, Cardiovasc Res Ctr, 149 13th St, Boston, MA 02129 USA
[6] Li Ka Shing Inst Hlth Sci, Lab Cardiovasc Physiol, Hong Kong, Peoples R China
[7] Massachusetts Gen Hosp, Cardiac Arrhythmia Serv, Div Cardiol, Boston, MA 02114 USA
[8] MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家卫生研究院;
关键词
Machine learning; Heart failure; Deep learning; DISEASE; UPDATE; MODEL;
D O I
10.1007/s10741-020-10007-3
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Machine learning (ML) algorithms "learn" information directly from data, and their performance improves proportionally with the number of high-quality samples. The aim of our systematic review is to present the state of the art regarding the implementation of ML techniques in the management of heart failure (HF) patients. We manually searched MEDLINE and Cochrane databases as well the reference lists of the relevant review studies and included studies. Our search retrieved 122 relevant studies. These studies mainly refer to (a) the role of ML in the classification of HF patients into distinct categories which may require a different treatment strategy, (b) discrimination of HF patients from the healthy population or other diseases, (c) prediction of HF outcomes, (d) identification of HF patients from electronic records and identification of HF patients with similar characteristics who may benefit form a similar treatment strategy, (e) supporting the extraction of important data from clinical notes, and (f) prediction of outcomes in HF populations with implantable devices (left ventricular assist device, cardiac resynchronization therapy). We concluded that ML techniques may play an important role for the efficient construction of methodologies for diagnosis, management, and prediction of outcomes in HF patients.
引用
收藏
页码:23 / 34
页数:12
相关论文
共 33 条
[1]   Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients [J].
Ahmad, Tariq ;
Lund, Lars H. ;
Rao, Pooja ;
Ghosh, Rohit ;
Warier, Prashant ;
Vaccaro, Benjamin ;
Dahlstrom, Ulf ;
O'Connor, Christopher M. ;
Felker, G. Michael ;
Desai, Nihar R. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2018, 7 (08)
[2]   A database for using machine learning and data mining techniques for coronary artery disease diagnosis [J].
Alizadehsani, R. ;
Roshanzamir, M. ;
Abdar, M. ;
Beykikhoshk, A. ;
Khosravi, A. ;
Panahiazar, M. ;
Koohestani, A. ;
Khozeimeh, F. ;
Nahavandi, S. ;
Sarrafzadegan, N. .
SCIENTIFIC DATA, 2019, 6 (1)
[3]  
Altman DG., 2009, BMJ, V6, DOI [DOI 10.1016/j.ijsu.2010.02.007, DOI 10.1136/BMJ.B2700]
[4]   Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction [J].
Angraal, Suveen ;
Mortazavi, Bobak J. ;
Gupta, Aakriti ;
Khera, Rohan ;
Ahmad, Tariq ;
Desai, Nihar R. ;
Jacoby, Daniel L. ;
Masoudi, Frederick A. ;
Spertus, John A. ;
Krumholz, Harlan M. .
JACC-HEART FAILURE, 2020, 8 (01) :12-21
[5]  
Benjamin EJ, 2019, CIRCULATION, V139, pE56, DOI [10.1161/CIR.0000000000000746, 10.1161/CIR.0000000000000659]
[6]  
Desai RJ, 2020, JAMA NETW OPEN, V3, DOI [10.1001/jamanetworkopen.2019.18962, 10.1001/jamanetworkopen.2019.10626]
[7]   Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk [J].
Dimopoulos, Alexandros C. ;
Nikolaidou, Mara ;
Felix Caballero, Francisco ;
Engchuan, Worrawat ;
Sanchez-Niubo, Albert ;
Arndt, Holger ;
Luis Ayuso-Mateos, Jose ;
Maria Haro, Josep ;
Chatterji, Somnath ;
Georgousopoulou, Ekavi N. ;
Pitsavos, Christos ;
Panagiotakos, Demosthenes B. .
BMC MEDICAL RESEARCH METHODOLOGY, 2018, 18
[8]   Validation of an echo-Doppler decision model to predict left ventricular filling pressure in patients with heart failure independently of ejection fraction [J].
Dini, Frank Lloyd ;
Ballo, Piercarlo ;
Badano, Luigi ;
Barbier, Paolo ;
Chella, Piersilvio ;
Conti, Umberto ;
De Tommasi, Salvatore Mario ;
Galderisi, Maurizio ;
Ghio, Stefano ;
Magagnini, Enrico ;
Pieroni, Andrea ;
Rossi, Andrea ;
Rusconi, Cesare ;
Temporelli, Pier Luigi .
EUROPEAN JOURNAL OF ECHOCARDIOGRAPHY, 2010, 11 (08) :703-710
[9]   Machine Learning: Discovering the Future of Medical Imaging [J].
Erickson, Bradley J. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :391-391
[10]   Machine learning versus traditional risk stratification methods in acute coronary syndrome: a pooled randomized clinical trial analysis [J].
Gibson, William J. ;
Nafee, Tarek ;
Travis, Ryan ;
Yee, Megan ;
Kerneis, Mathieu ;
Ohman, Magnus ;
Gibson, C. Michael .
JOURNAL OF THROMBOSIS AND THROMBOLYSIS, 2020, 49 (01) :1-9