The log-Brunn-Minkowski inequality

被引:233
作者
Boeroeczky, Karoly J. [2 ]
Lutwak, Erwin [1 ]
Yang, Deane [1 ]
Zhang, Gaoyong [1 ]
机构
[1] NYU, Polytech Inst, Brooklyn, NY USA
[2] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1051 Budapest, Hungary
基金
美国国家科学基金会;
关键词
Brunn-Minkowski inequality; Brunn-Minkowski-Firey inequality; Minkowski mixed-volume inequality; Minkowski-Firey L-p-combinations; VOLUME INEQUALITIES; FIREY THEORY; AFFINE; BODIES; CLASSIFICATION; CURVATURE; SHAPES;
D O I
10.1016/j.aim.2012.07.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For origin-symmetric convex bodies the unit balls of finite dimensional Banach spaces) it is conjectured that there exist a family of inequalities each of which is stronger than the classical Brunn-Minkowski inequality and a family of inequalities each of which is stronger than the classical Minkowski mixed-volume inequality. It is shown that these two families of inequalities are "equivalent" in that once either of these inequalities is established, the other Must follow as a consequence. All of the conjectured inequalities are established for plane convex bodies. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1974 / 1997
页数:24
相关论文
共 50 条
[41]   THE ORLICZ BRUNN-MINKOWSKI INEQUALITY FOR DUAL HARMONIC QUERMASSINTEGRALS [J].
Wu, Xiang ;
Li, Shougui .
ACTA MATHEMATICA SCIENTIA, 2019, 39 (04) :945-954
[42]   The Brunn-Minkowski inequality and a Minkowski problem for A-harmonic Green's function [J].
Akman, Murat ;
Lewis, John ;
Saari, Olli ;
Vogel, Andrew .
ADVANCES IN CALCULUS OF VARIATIONS, 2021, 14 (02) :247-302
[43]   Extensions of Brunn-Minkowski's inequality to multiple matrices [J].
Li, Yongtao ;
Feng, Lihua .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 603 :91-100
[44]   A Brunn-Minkowski inequality for the Monge-Ampere eigenvalue [J].
Salani, P .
ADVANCES IN MATHEMATICS, 2005, 194 (01) :67-86
[45]   THE BRUNN-MINKOWSKI INEQUALITY AND NONTRIVIAL CYCLES IN THE DISCRETE TORUS [J].
Alon, Noga ;
Feldheim, Ohad N. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (03) :892-894
[46]   Orlicz Extensions of Brunn-Minkowski Theory [J].
Chen, Ruifang ;
Guo, Lujun .
RESULTS IN MATHEMATICS, 2018, 73 (02)
[47]   A direct proof of the Brunn-Minkowski inequality in nilpotent Lie groups [J].
Pozuelo, Julian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 515 (02)
[48]   Brunn-Minkowski and Zhang inequalities for convolution bodies [J].
Alonso-Gutierrez, David ;
Hugo Jimenez, C. ;
Villa, Rafael .
ADVANCES IN MATHEMATICS, 2013, 238 :50-69
[49]   On a Brunn-Minkowski inequality for measures with quasi-convex densities [J].
Yepes Nicolas, Jesus .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)
[50]   THE LOG-MINKOWSKI INEQUALITY OF CURVATURE ENTROPY [J].
Ma, Lei ;
Zeng, Chunna ;
Wang, Yaling .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (08) :3587-3600