Automatic Pixel-Level Crack Detection on Dam Surface Using Deep Convolutional Network

被引:101
作者
Feng, Chuncheng [1 ]
Zhang, Hua [1 ]
Wang, Haoran [2 ]
Wang, Shuang [3 ]
Li, Yonglong [3 ]
机构
[1] Southwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621000, Sichuan, Peoples R China
[2] Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Sichuan Energy Internet Res Inst, Chengdu 610000, Peoples R China
关键词
crack detection; dam surface; UAV; pixel-level; deep convolutional network; BRIDGE CRACKS; INSPECTION; TRANSFORM; SYSTEMS; MODEL;
D O I
10.3390/s20072069
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Crack detection on dam surfaces is an important task for safe inspection of hydropower stations. More and more object detection methods based on deep learning are being applied to crack detection. However, most of the methods can only achieve the classification and rough location of cracks. Pixel-level crack detection can provide more intuitive and accurate detection results for dam health assessment. To realize pixel-level crack detection, a method of crack detection on dam surface (CDDS) using deep convolution network is proposed. First, we use an unmanned aerial vehicle (UAV) to collect dam surface images along a predetermined trajectory. Second, raw images are cropped. Then crack regions are manually labelled on cropped images to create the crack dataset, and the architecture of CDDS network is designed. Finally, the CDDS network is trained, validated and tested using the crack dataset. To validate the performance of the CDDS network, the predicted results are compared with ResNet152-based, SegNet, UNet and fully convolutional network (FCN). In terms of crack segmentation, the recall, precision, F-measure and IoU are 80.45%, 80.31%, 79.16%, and 66.76%. The results on test dataset show that the CDDS network has better performance for crack detection of dam surfaces.
引用
收藏
页数:20
相关论文
共 49 条
[1]  
[Anonymous], 2014, Comput. Sci.
[2]  
[Anonymous], 2016, ADV NEUR INF PROC SY, DOI [DOI 10.2165/00129785-200404040-00005, DOI 10.1145/3065386]
[3]  
[Anonymous], FRONT BUILT ENV
[4]  
[Anonymous], IEEE T PATTERN ANAL
[5]  
[Anonymous], Anal. Mach. Intell.
[6]   Encoder-decoder network for pixel-level road crack detection in black-box images [J].
Bang, Seongdeok ;
Park, Somin ;
Kim, Hongjo ;
Kim, Hyoungkwan .
COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2019, 34 (08) :713-727
[7]   Autonomous concrete crack detection using deep fully convolutional neural network [J].
Cao Vu Dung ;
Le Duc Anh .
AUTOMATION IN CONSTRUCTION, 2019, 99 :52-58
[8]   Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types [J].
Cha, Young-Jin ;
Choi, Wooram ;
Suh, Gahyun ;
Mahmoudkhani, Sadegh ;
Buyukozturk, Oral .
COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2018, 33 (09) :731-747
[9]   Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks [J].
Cha, Young-Jin ;
Choi, Wooram ;
Buyukozturk, Oral .
COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2017, 32 (05) :361-378
[10]   Vision-based detection of loosened bolts using the Hough transform and support vector machines [J].
Cha, Young-Jin ;
You, Kisung ;
Choi, Wooram .
AUTOMATION IN CONSTRUCTION, 2016, 71 :181-188