Hyperspectral Image Reconstruction Using a Deep Spatial-Spectral Prior

被引:105
作者
Wang, Lizhi [1 ]
Sun, Chen [1 ]
Fu, Ying [1 ]
Kim, Min H. [2 ]
Huang, Hua [1 ]
机构
[1] Beijing Inst Technol, Beijing, Peoples R China
[2] Korea Adv Inst Sci & Technol, Seoul, South Korea
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
基金
中国国家自然科学基金;
关键词
SYSTEM;
D O I
10.1109/CVPR.2019.00822
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Regularization is a fundamental technique to solve an illposed optimizationproblem robustly and is essential to reconstruct compressive hyperspectralimages. Various handcrafted priors have been employed as a regularizer but are often insufficient to handle the wide variety of spectra of natural hyperspectral images, resulting in poor reconstruction quality. Moreover the prior-regularizedoptimization requires manual tweaking of its weight parameters to achieve a balance between the spatialand spectral fidelity of result images. In thispaper we presenta novel hyperspectralimage reconstructionalgorithm that substitutes the traditionalhand-craftedpriorwith a data-drivenprior, based on an optimization-inspirednetwork. Our method consists of two main parts: First, we learn a novel datadriven priorthat regularizes the optimizationproblem with a goal to boost the spatial-spectralfidelity.Our data-driven prior learns both local coherence and dynamic characteristics of natural hyperspectral images. Second, we combine our regularizerwith an optimization-inspirednetwork to overcome the heavy computation problem in the traditional iterative optimization methods. We learn the complete parameters in the network through end-to-end training, enabling robust performance with high accuracy. Extensive simulation and hardware experiments validate the superiorperformance of our method over the state-of-theartmethods.
引用
收藏
页码:8024 / 8033
页数:10
相关论文
共 42 条
[1]  
[Anonymous], 2015, Arxiv.Org, DOI DOI 10.3389/FPSYG.2013.00124
[2]   Sparse Recovery of Hyperspectral Signal from Natural RGB Images [J].
Arad, Boaz ;
Ben-Shahar, Ohad .
COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 :19-34
[3]   Compressive Coded Aperture Spectral Imaging [J].
Arce, Gonzalo R. ;
Brady, David J. ;
Carin, Lawrence ;
Arguello, Henry ;
Kittle, David S. .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) :105-115
[4]   Compact Single-Shot Hyperspectral Imaging Using a Prism [J].
Baek, Seung-Hwan ;
Kim, Incheol ;
Gutierrez, Diego ;
Kim, Min H. .
ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (06)
[5]  
Borengasser M., 2007, Hyperspectral Remote Sensing: Principles and Applications
[6]  
Brady D. J., 2009, Optical Imaging and Spectroscopy
[7]   Computational Snapshot Multispectral Cameras Toward dynamic capture of the spectral world [J].
Cao, Xun ;
Yue, Tao ;
Lin, Xing ;
Lin, Stephen ;
Yuan, Xin ;
Dai, Qionghai ;
Carin, Lawrence ;
Brady, David J. .
IEEE SIGNAL PROCESSING MAGAZINE, 2016, 33 (05) :95-108
[8]  
Chalaabarti A., 2011, PROC CVPR IEEE, P193, DOI [DOI 10.1109/CVPR.2011.5995660, 10.1109/CVPR.2011.5995660]
[9]   High-Quality Hyperspectral Reconstruction Using a Spectral Prior [J].
Choi, Inchang ;
Jeon, Daniel S. ;
Nam, Giljoo ;
Gutierrez, Diego ;
Kim, Min H. .
ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (06)
[10]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306