Multiple Kernel Learning for Drug Discovery

被引:1
|
作者
Pilkington, Nicholas C. V. [1 ]
Trotter, Matthew W. B. [2 ,3 ,4 ]
Holden, Sean B. [1 ]
机构
[1] Univ Cambridge, Comp Lab, Cambridge CB3 0FD, England
[2] Univ Cambridge, Anne McLaren Lab Regenerat Med, Cambridge CB3 0FD, England
[3] Univ Cambridge, Dept Surg, Cambridge CB3 0FD, England
[4] Celgene Inst Translat Res Europe CITRE, Seville, Spain
基金
英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
Chemoinformatics; Drug discovery; Kernel methods; Machine learning; Structure-property relationships; SUPPORT VECTOR MACHINES; INTESTINAL-ABSORPTION; MULTIDRUG-RESISTANCE; PREDICTION; CLASSIFICATION; PHARMACOPHORE; DESCRIPTORS; SELECTION; ENSEMBLE; REVERSAL;
D O I
10.1002/minf.201100146
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The support vector machine (SVM) methodology has become a popular and well-used component of present chemometric analysis. We assess a relatively recent development of the algorithm, multiple kernel learning (MKL), on published structure-property relationship (SPR) data. The MKL algorithm learns a weighting across multiple kernel-based representations of the data during supervised classifier creation and, thereby, may be used to describe the influence of distinct groups of structural descriptors upon a single structureproperty classifier without explicitly omitting any of them. We observe a statistically significant performance improvement over a conventional, single kernel SVM on all three SPR data sets analysed. Furthermore, MKL output is observed to provide useful information regarding the relative influence of five distinct descriptor subsets present in each data set.
引用
收藏
页码:313 / 322
页数:10
相关论文
共 50 条
  • [31] lp-Norm Multiple Kernel Learning
    Kloft, Marius
    Brefeld, Ulf
    Sonnenburg, Soeren
    Zien, Alexander
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 953 - 997
  • [32] Comparison of Deep Learning With Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets
    Korotcov, Alexandru
    Tkachenko, Valery
    Russo, Daniel P.
    Ekins, Sean
    MOLECULAR PHARMACEUTICS, 2017, 14 (12) : 4462 - 4475
  • [33] Machine Learning in Drug Discovery: A Review
    Suresh Dara
    Swetha Dhamercherla
    Surender Singh Jadav
    CH Madhu Babu
    Mohamed Jawed Ahsan
    Artificial Intelligence Review, 2022, 55 : 1947 - 1999
  • [34] Multiple kernel learning by empirical target kernel
    Wang, Peiyan
    Cai, Dongfeng
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2020, 18 (02)
  • [35] Efficient Sparse Generalized Multiple Kernel Learning
    Yang, Haiqin
    Xu, Zenglin
    Ye, Jieping
    King, Irwin
    Lyu, Michael R.
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (03): : 433 - 446
  • [36] Multiple Instance Learning via Multiple Kernel Learning
    Yang, Bing
    Li, Qian
    Jing, Ling
    Zhen, Ling
    OPERATIONS RESEARCH AND ITS APPLICATIONS, 2010, 12 : 160 - 167
  • [37] MARK-ELM: Application of a novel Multiple Kernel Learning framework for improving the robustness of Network Intrusion Detection
    Fossaceca, John M.
    Mazzuchi, Thomas A.
    Sarkani, Shahram
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (08) : 4062 - 4080
  • [38] Machine Learning-based Virtual Screening and Its Applications to Alzheimer's Drug Discovery: A Review
    Carpenter, Kristy A.
    Huang, Xudong
    CURRENT PHARMACEUTICAL DESIGN, 2018, 24 (28) : 3347 - 3358
  • [39] Improved multiple kernel extreme learning machine based on AdaBoost.RT
    Shen, Lihua
    Chen, Jihong
    Ge, Zhaocheng
    Jin, Jian
    Yang, Jianzhong
    Zhang, Hangjun
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 4736 - 4741
  • [40] A combined drug discovery strategy based on machine learning and molecular docking
    Zhang, Yanmin
    Wang, Yuchen
    Zhou, Weineng
    Fan, Yuanrong
    Zhao, Junnan
    Zhu, Lu
    Lu, Shuai
    Lu, Tao
    Chen, Yadong
    Liu, Haichun
    CHEMICAL BIOLOGY & DRUG DESIGN, 2019, 93 (05) : 685 - 699