The support vector machine (SVM) methodology has become a popular and well-used component of present chemometric analysis. We assess a relatively recent development of the algorithm, multiple kernel learning (MKL), on published structure-property relationship (SPR) data. The MKL algorithm learns a weighting across multiple kernel-based representations of the data during supervised classifier creation and, thereby, may be used to describe the influence of distinct groups of structural descriptors upon a single structureproperty classifier without explicitly omitting any of them. We observe a statistically significant performance improvement over a conventional, single kernel SVM on all three SPR data sets analysed. Furthermore, MKL output is observed to provide useful information regarding the relative influence of five distinct descriptor subsets present in each data set.
机构:
Univ Fed Minas Gerais, Fac Farm, Dept Prod Farmaceut, Belo Horizonte, MG, BrazilUniv Fed Minas Gerais, Fac Farm, Dept Prod Farmaceut, Belo Horizonte, MG, Brazil
Maltarollo, Vinicius Goncalves
Kronenberger, Thales
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hosp Tubingen, Dept Internal Med 8, Tubingen, GermanyUniv Fed Minas Gerais, Fac Farm, Dept Prod Farmaceut, Belo Horizonte, MG, Brazil
Kronenberger, Thales
Espinoza, Gabriel Zarzana
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Escola Artes Ciencias & Humanidades, BR-03828000 Sao Paulo, SP, BrazilUniv Fed Minas Gerais, Fac Farm, Dept Prod Farmaceut, Belo Horizonte, MG, Brazil
Espinoza, Gabriel Zarzana
Oliveira, Patricia Rufino
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Escola Artes Ciencias & Humanidades, BR-03828000 Sao Paulo, SP, BrazilUniv Fed Minas Gerais, Fac Farm, Dept Prod Farmaceut, Belo Horizonte, MG, Brazil
Oliveira, Patricia Rufino
Honorio, Kathia Maria
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Escola Artes Ciencias & Humanidades, BR-03828000 Sao Paulo, SP, Brazil
Univ Fed ABC, Ctr Ciencias Nat & Humanas, Santo Andre, BrazilUniv Fed Minas Gerais, Fac Farm, Dept Prod Farmaceut, Belo Horizonte, MG, Brazil