Multiple Kernel Learning for Drug Discovery

被引:1
|
作者
Pilkington, Nicholas C. V. [1 ]
Trotter, Matthew W. B. [2 ,3 ,4 ]
Holden, Sean B. [1 ]
机构
[1] Univ Cambridge, Comp Lab, Cambridge CB3 0FD, England
[2] Univ Cambridge, Anne McLaren Lab Regenerat Med, Cambridge CB3 0FD, England
[3] Univ Cambridge, Dept Surg, Cambridge CB3 0FD, England
[4] Celgene Inst Translat Res Europe CITRE, Seville, Spain
基金
英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
Chemoinformatics; Drug discovery; Kernel methods; Machine learning; Structure-property relationships; SUPPORT VECTOR MACHINES; INTESTINAL-ABSORPTION; MULTIDRUG-RESISTANCE; PREDICTION; CLASSIFICATION; PHARMACOPHORE; DESCRIPTORS; SELECTION; ENSEMBLE; REVERSAL;
D O I
10.1002/minf.201100146
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The support vector machine (SVM) methodology has become a popular and well-used component of present chemometric analysis. We assess a relatively recent development of the algorithm, multiple kernel learning (MKL), on published structure-property relationship (SPR) data. The MKL algorithm learns a weighting across multiple kernel-based representations of the data during supervised classifier creation and, thereby, may be used to describe the influence of distinct groups of structural descriptors upon a single structureproperty classifier without explicitly omitting any of them. We observe a statistically significant performance improvement over a conventional, single kernel SVM on all three SPR data sets analysed. Furthermore, MKL output is observed to provide useful information regarding the relative influence of five distinct descriptor subsets present in each data set.
引用
收藏
页码:313 / 322
页数:10
相关论文
共 50 条
  • [21] Soft Margin Multiple Kernel Learning
    Xu, Xinxing
    Tsang, Ivor W.
    Xu, Dong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (05) : 749 - 761
  • [22] Advances with support vector machines for novel drug discovery
    Maltarollo, Vinicius Goncalves
    Kronenberger, Thales
    Espinoza, Gabriel Zarzana
    Oliveira, Patricia Rufino
    Honorio, Kathia Maria
    EXPERT OPINION ON DRUG DISCOVERY, 2019, 14 (01) : 23 - 33
  • [23] Multiple-kernel learning for genomic data mining and prediction
    Christopher M. Wilson
    Kaiqiao Li
    Xiaoqing Yu
    Pei-Fen Kuan
    Xuefeng Wang
    BMC Bioinformatics, 20
  • [24] Multiple-kernel learning for genomic data mining and prediction
    Wilson, Christopher M.
    Li, Kaiqiao
    Yu, Xiaoqing
    Kuan, Pei-Fen
    Wang, Xuefeng
    BMC BIOINFORMATICS, 2019, 20 (01)
  • [25] Machine-Learning Techniques Applied to Antibacterial Drug Discovery
    Durrant, Jacob D.
    Amaro, Rommie E.
    CHEMICAL BIOLOGY & DRUG DESIGN, 2015, 85 (01) : 14 - 21
  • [26] Machine Learning in Drug Discovery and Development
    Wale, Nikil
    DRUG DEVELOPMENT RESEARCH, 2011, 72 (01) : 112 - 119
  • [27] Machine learning in chemoinformatics and drug discovery
    Lo, Yu-Chen
    Rensi, Stefano E.
    Torng, Wen
    Altman, Russ B.
    DRUG DISCOVERY TODAY, 2018, 23 (08) : 1538 - 1546
  • [28] Linking machine learning and biophysical structural features in drug discovery
    Ahmadi, Armin
    Gupta, Shivangi
    Menon, Vineetha
    Baudry, Jerome
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2025, 11
  • [29] On Radius-Incorporated Multiple Kernel Learning
    Liu, Xinwang
    Yin, Jianping
    Long, Jun
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, MDAI 2014, 2014, 8825 : 227 - 240
  • [30] Bridging deep and multiple kernel learning: A review
    Wang, Tinghua
    Zhang, Lin
    Hu, Wenyu
    INFORMATION FUSION, 2021, 67 : 3 - 13