Multiple Kernel Learning for Drug Discovery

被引:1
|
作者
Pilkington, Nicholas C. V. [1 ]
Trotter, Matthew W. B. [2 ,3 ,4 ]
Holden, Sean B. [1 ]
机构
[1] Univ Cambridge, Comp Lab, Cambridge CB3 0FD, England
[2] Univ Cambridge, Anne McLaren Lab Regenerat Med, Cambridge CB3 0FD, England
[3] Univ Cambridge, Dept Surg, Cambridge CB3 0FD, England
[4] Celgene Inst Translat Res Europe CITRE, Seville, Spain
基金
英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
Chemoinformatics; Drug discovery; Kernel methods; Machine learning; Structure-property relationships; SUPPORT VECTOR MACHINES; INTESTINAL-ABSORPTION; MULTIDRUG-RESISTANCE; PREDICTION; CLASSIFICATION; PHARMACOPHORE; DESCRIPTORS; SELECTION; ENSEMBLE; REVERSAL;
D O I
10.1002/minf.201100146
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The support vector machine (SVM) methodology has become a popular and well-used component of present chemometric analysis. We assess a relatively recent development of the algorithm, multiple kernel learning (MKL), on published structure-property relationship (SPR) data. The MKL algorithm learns a weighting across multiple kernel-based representations of the data during supervised classifier creation and, thereby, may be used to describe the influence of distinct groups of structural descriptors upon a single structureproperty classifier without explicitly omitting any of them. We observe a statistically significant performance improvement over a conventional, single kernel SVM on all three SPR data sets analysed. Furthermore, MKL output is observed to provide useful information regarding the relative influence of five distinct descriptor subsets present in each data set.
引用
收藏
页码:313 / 322
页数:10
相关论文
共 50 条
  • [1] Machine Learning Methods in Drug Discovery
    Patel, Lauv
    Shukla, Tripti
    Huang, Xiuzhen
    Ussery, David W.
    Wang, Shanzhi
    MOLECULES, 2020, 25 (22):
  • [2] Machine Learning in Drug Discovery: A Review
    Dara, Suresh
    Dhamercherla, Swetha
    Jadav, Surender Singh
    Babu, C. H. Madhu
    Ahsan, Mohamed Jawed
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (03) : 1947 - 1999
  • [3] Application of artificial intelligence and machine learning methods in drug discovery and development
    Naranjo-Castaneda, Carlos
    Coello-Coello, Carlos A.
    Juaristi, Eusebio
    ARKIVOC, 2024,
  • [4] A review on machine learning approaches and trends in drug discovery
    Carracedo-Reboredo, Paula
    Linares-Blanco, Jose
    Rodriguez-Fernandez, Nereida
    Cedron, Francisco
    Novoa, Francisco J.
    Carballal, Adrian
    Maojo, Victor
    Pazos, Alejandro
    Fernandez-Lozano, Carlos
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 4538 - 4558
  • [5] Machine learning approaches and their applications in drug discovery and design
    Priya, Sonal
    Tripathi, Garima
    Singh, Dev Bukhsh
    Jain, Priyanka
    Kumar, Abhijeet
    CHEMICAL BIOLOGY & DRUG DESIGN, 2022, 100 (01) : 136 - 153
  • [6] A multiple kernel learning algorithm for drug-target interaction prediction
    Nascimento, Andre C. A.
    Prudencio, Ricardo B. C.
    Costa, Ivan G.
    BMC BIOINFORMATICS, 2016, 17
  • [7] A multiple kernel learning algorithm for drug-target interaction prediction
    André C. A. Nascimento
    Ricardo B. C. Prudêncio
    Ivan G. Costa
    BMC Bioinformatics, 17
  • [8] Modelling and Recognition of Protein Contact Networks by Multiple Kernel Learning and Dissimilarity Representations
    Martino, Alessio
    De Santis, Enrico
    Giuliani, Alessandro
    Rizzi, Antonello
    ENTROPY, 2020, 22 (07)
  • [9] Machine learning in Alzheimer's disease drug discovery and target identification
    Geng, Chaofan
    Wang, ZhiBin
    Tang, Yi
    AGEING RESEARCH REVIEWS, 2024, 93
  • [10] In silico drug discovery: a machine learning-driven systematic review
    Atasever, Sema
    MEDICINAL CHEMISTRY RESEARCH, 2024, 33 (09) : 1465 - 1490