A large, open source dataset of stroke anatomical brain images and manual lesion segmentations

被引:165
|
作者
Liew, Sook-Lei [1 ]
Anglin, Julia M. [1 ]
Banks, Nick W. [1 ]
Sondag, Matt [1 ]
Ito, Kaori L. [1 ]
Kim, Hosung [1 ]
Chan, Jennifer [1 ]
Ito, Joyce [1 ]
Jung, Connie [1 ]
Khoshab, Nima [2 ]
Lefebvre, Stephanie [1 ]
Nakamura, William [1 ]
Saldana, David [1 ]
Schmiesing, Allie [1 ]
Tran, Cathy [1 ]
Vo, Danny [1 ]
Ard, Tyler [1 ]
Heydari, Panthea [1 ]
Kim, Bokkyu [1 ]
Aziz-Zadeh, Lisa [1 ]
Cramer, Steven C. [2 ]
Liu, Jingchun [3 ]
Soekadar, Surjo [4 ]
Nordvik, Jan-Egil [5 ]
Westlye, Lars T. [6 ,7 ,8 ]
Wang, Junping [3 ]
Winstein, Carolee [1 ]
Yu, Chunshui [3 ]
Ai, Lei [9 ]
Koo, Bonhwang [9 ]
Craddock, R. Cameron [9 ,10 ]
Milham, Michael [9 ,10 ]
Lakich, Matthew [11 ]
Pienta, Amy [12 ]
Stroud, Alison [12 ]
机构
[1] Univ Southern Calif, Los Angeles, CA 90089 USA
[2] Univ Calif Irvine, Irvine, CA 92697 USA
[3] Tianjin Med Univ, Gen Hosp, Tianjin 30051, Peoples R China
[4] Univ Tubingen, D-72076 Tubingen, Germany
[5] Sunnaas Rehabil Hosp HT, N-1453 Nesodden, Norway
[6] Oslo Univ Hosp, NORMENT, N-0372 Oslo, Norway
[7] Oslo Univ Hosp, KG Jebsen Ctr Psychosis Res, Div Mental Hlth & Addict, N-0372 Oslo, Norway
[8] Univ Oslo, Dept Psychol, N-0315 Oslo, Norway
[9] Child Mind Inst, New York, NY 10022 USA
[10] Nathan S Kline Inst Psychiat Res, Orangeburg, NY 10962 USA
[11] Univ Texas Med Branch, Galveston, TX 77555 USA
[12] Univ Michigan, Ann Arbor, MI 48104 USA
关键词
RECOVERY; PREDICT; DISEASE; GAINS; TIME;
D O I
10.1038/sdata.2018.11
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Stroke is the leading cause of adult disability worldwide, with up to two-thirds of individuals experiencing long-term disabilities. Large-scale neuroimaging studies have shown promise in identifying robust biomarkers (e.g., measures of brain structure) of long-term stroke recovery following rehabilitation. However, analyzing large rehabilitation-related datasets is problematic due to barriers in accurate stroke lesion segmentation. Manually-traced lesions are currently the gold standard for lesion segmentation on T1-weighted MRIs, but are labor intensive and require anatomical expertise. While algorithms have been developed to automate this process, the results often lack accuracy. Newer algorithms that employ machine-learning techniques are promising, yet these require large training datasets to optimize performance. Here we present ATLAS (Anatomical Tracings of Lesions After Stroke), an open-source dataset of 304 T1-weighted MRIs with manually segmented lesions and metadata. This large, diverse dataset can be used to train and test lesion segmentation algorithms and provides a standardized dataset for comparing the performance of different segmentation methods. We hope ATLAS release 1.1 will be a useful resource to assess and improve the accuracy of current lesion segmentation methods.
引用
收藏
页数:11
相关论文
共 1 条
  • [1] A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms
    Liew, Sook-Lei
    Lo, Bethany P.
    Donnelly, Miranda R.
    Zavaliangos-Petropulu, Artemis
    Jeong, Jessica N.
    Barisano, Giuseppe
    Hutton, Alexandre
    Simon, Julia P.
    Juliano, Julia M.
    Suri, Anisha
    Wang, Zhizhuo
    Abdullah, Aisha
    Kim, Jun
    Ard, Tyler
    Banaj, Nerisa
    Borich, Michael R.
    Boyd, Lara A.
    Brodtmann, Amy
    Buetefisch, Cathrin M.
    Cao, Lei
    Cassidy, Jessica M.
    Ciullo, Valentina
    Conforto, Adriana B.
    Cramer, Steven C.
    Dacosta-Aguayo, Rosalia
    de la Rosa, Ezequiel
    Domin, Martin
    Dula, Adrienne N.
    Feng, Wuwei
    Franco, Alexandre R.
    Geranmayeh, Fatemeh
    Gramfort, Alexandre
    Gregory, Chris M.
    Hanlon, Colleen A.
    Hordacre, Brenton G.
    Kautz, Steven A.
    Khlif, Mohamed Salah
    Kim, Hosung
    Kirschke, Jan S.
    Liu, Jingchun
    Lotze, Martin
    MacIntosh, Bradley J.
    Mataro, Maria
    Mohamed, Feroze B.
    Nordvik, Jan E.
    Park, Gilsoon
    Pienta, Amy
    Piras, Fabrizio
    Redman, Shane M.
    Revill, Kate P.
    SCIENTIFIC DATA, 2022, 9 (01)