Relative Calabi-Yau structures

被引:18
作者
Brav, Christopher [1 ]
Dyckerhoff, Tobias [2 ]
机构
[1] Natl Res Univ, Higher Sch Econ, Lab Mirror Symmetry, NRU HSE, 6 Usacheva Str, Moscow 119048, Russia
[2] Univ Hamburg, Fachbereich Math, Bundesstr 55, D-20146 Hamburg, Germany
关键词
differential graded categories; noncommutative Calabi-Yau structures; CYCLIC HOMOLOGY; CATEGORIES;
D O I
10.1112/S0010437X19007024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce relative noncommutative Calabi-Yau structures defined on functors of differential graded categories. Examples arise in various contexts such as topology, algebraic geometry, and representation theory. Our main result is a composition law for Calabi-Yau cospans generalizing the classical composition of cobordisms of oriented manifolds. As an application, we construct Calabi-Yau structures on topological Fukaya categories of framed punctured Riemann surfaces.
引用
收藏
页码:372 / 412
页数:41
相关论文
共 33 条
  • [1] Spherical DG-functors
    Anno, Rina
    Logvinenko, Timothy
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (09) : 2577 - 2656
  • [2] [Anonymous], 2011, Higher algebra
  • [3] [Anonymous], 2009, HIGHER TOPOS THEORY, DOI DOI 10.1515/9781400830558
  • [4] [Anonymous], 1990, Progr. Math.
  • [5] Brav C., 2018, ARXIV181211913
  • [6] Lagrangian structures on mapping stacks and semi-classical TFTs
    Calaque, Damien
    [J]. STACKS AND CATEGORIES IN GEOMETRY, TOPOLOGY, AND ALGEBRA, 2015, 643 : 1 - 23
  • [7] Cohen R., 2015, PREPRINT
  • [8] Crossed simplicial groups and structured surfaces
    Dyckerhoff, T.
    Kapranov, M.
    [J]. STACKS AND CATEGORIES IN GEOMETRY, TOPOLOGY, AND ALGEBRA, 2015, 643 : 37 - 110
  • [9] Triangulated surfaces in triangulated categories
    Dyckerhoff, Tobias
    Kapranov, Mikhail
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (06) : 1473 - 1524
  • [10] A1-homotopy invariants of topological Fukaya categories of surfaces
    Dyckerhoff, Tobias
    [J]. COMPOSITIO MATHEMATICA, 2017, 153 (08) : 1673 - 1705