A Multiple Coefficients Trial Method to Solve Combinatorial Optimization Problems for Simulated-annealing-based Ising Machines

被引:0
作者
Takehara, Kota [1 ]
Oku, Daisuke [1 ]
Matsuda, Yoshiki [2 ]
Tanaka, Shu [3 ,4 ]
Togawa, Nozomu [1 ]
机构
[1] Waseda Univ, Dept Comp Sci & Commun Engn, Tokyo, Japan
[2] Fixstars Corp, Tokyo, Japan
[3] Waseda Univ, Green Comp Syst Res Org, Tokyo, Japan
[4] Japan Sci & Technol Agcy, Precursory Res Embryon Sci & Technol, Kawaguchi, Saitama, Japan
来源
2019 IEEE 9TH INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE-BERLIN) | 2019年
关键词
Ising machine; traveling salesman problem; penalty coefficient; combinatorial optimization problem; Quadratic Unconstrained Binary Optimization;
D O I
10.1109/icce-berlin47944.2019.8966167
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
When solving a combinatorial optimization problem with Ising machines, we have to formulate it onto an energy function of Ising model. Here, how to determine the penalty coefficients in the energy function is a great concern if it includes constraint terms. In this paper, we focus on a traveling salesman problem (TSP, in short), one of the combinatorial optimization problems with equality constraints. Firstly, we investigate the relationship between the penalty coefficient and the accuracy of solutions in a TSP. Based on it, we propose a method to obtain a TSP quasi-optimum solution, which is called multiple coefficients trial method. In our proposed method, we use an Ising machine to solve a TSP by changing a penalty coefficient every trial, the TSP solutions can converge very fast in total. Compared to naive methods using simulated-annealing-based Ising machines, we confirmed that our proposed method can reduce the total number of annealing iterations to 1/10 to 1/1000 to obtain a quasi-optimum solution in 32-city TSPs.
引用
收藏
页码:64 / 69
页数:6
相关论文
共 12 条
  • [1] Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems
    Goto, Hayato
    Tatsumura, Kosuke
    Dixon, Alexander R.
    [J]. SCIENCE ADVANCES, 2019, 5 (04)
  • [2] A coherent Ising machine for 2000-node optimization problems
    Inagaki, Takahiro
    Haribara, Yoshitaka
    Igarashi, Koji
    Sonobe, Tomohiro
    Tamate, Shuhei
    Honjo, Toshimori
    Marandi, Alireza
    McMahon, Peter L.
    Umeki, Takeshi
    Enbutsu, Koji
    Tadanaga, Osamu
    Takenouchi, Hirokazu
    Aihara, Kazuyuki
    Kawarabayashi, Ken-ichi
    Inoue, Kyo
    Utsunomiya, Shoko
    Takesue, Hiroki
    [J]. SCIENCE, 2016, 354 (6312) : 603 - 606
  • [3] Report on the theory of ferromagnetism
    Ising, E
    [J]. ZEITSCHRIFT FUR PHYSIK, 1925, 31 : 253 - 258
  • [4] Quantum annealing with manufactured spins
    Johnson, M. W.
    Amin, M. H. S.
    Gildert, S.
    Lanting, T.
    Hamze, F.
    Dickson, N.
    Harris, R.
    Berkley, A. J.
    Johansson, J.
    Bunyk, P.
    Chapple, E. M.
    Enderud, C.
    Hilton, J. P.
    Karimi, K.
    Ladizinsky, E.
    Ladizinsky, N.
    Oh, T.
    Perminov, I.
    Rich, C.
    Thom, M. C.
    Tolkacheva, E.
    Truncik, C. J. S.
    Uchaikin, S.
    Wang, J.
    Wilson, B.
    Rose, G.
    [J]. NATURE, 2011, 473 (7346) : 194 - 198
  • [5] Karp R.M., 1972, The IBM Research Symposia Series, P85, DOI [DOI 10.1007/978-1-4684-2001-2_9, 10.1007/978-1-4684-2001-29, DOI 10.1007/978-1-4684-2001-29]
  • [6] Ising formulations of many NP problems
    Lucas, Andrew
    [J]. FRONTIERS IN PHYSICS, 2014, 2 : 1 - 14
  • [7] Application of Ising Machines and a Software Development for Ising Machines
    Tanahashi, Kotaro
    Takayanagi, Shinichi
    Motohashi, Tomomitsu
    Tanaka, Shu
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2019, 88 (06)
  • [8] Tanaka S., 2017, Quantum Spin Glasses, Annealing and Computation
  • [9] Terada Katsuyuki, 2018, Collection and Research (Taichung), P1, DOI 10.6693/CAR.201803_(31).0001
  • [10] Tsukamoto S, 2017, FUJITSU SCI TECH J, V53, P8