This paper reviews existing published studies on crack propagation behavior of zirconia-based composites. The first part of the paper is concerned with slow crack growth (SCG) under static loading. SCG in zirconia ceramics is shown to be a consequence of stress corrosion by water molecules at the crack tip. The influence of transformation toughening on SCG is discussed in terms of a stress intensity factor acting to reduce the net driving force for propagation. This proposition is in agreement with results obtained on 3Y-TZP and Mg-PSZ ceramics. A master curve is proposed which could be applied roughly to all zirconia ceramics. The influence of zirconia addition to alumina ceramics (ZTA ceramics) is also discussed. The second part of the paper deals with SCG under cyclic loading. A mechanical degradation of all zirconia-based composites is observed by a decrease of crack shielding. This degradation of zirconia-based composites under cyclic loading leads to increased velocities as compared to the static fatigue case. A master curve is also obtained, as in the case of static fatigue. Cyclic fatigue results are interpreted in terms of stress corrosion at the crack tip assisted by a decrease of the reinforcement. (C) 1999 Elsevier Science Ltd. All rights reserved.