Phishing Attacks Detection A Machine Learning-Based Approach

被引:11
|
作者
Salahdine, Fatima [1 ,2 ]
El Mrabet, Zakaria [1 ]
Kaabouch, Naima [1 ]
机构
[1] Univ North Dakota, Sch Elect Engn & Comp Sci, Grand Forks, ND 58203 USA
[2] Univ N Carolina, Dept Elect & Comp Engn, Charlotte, NC 28223 USA
来源
2021 IEEE 12TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON) | 2021年
关键词
Security; Phishing attacks; Machine learning;
D O I
10.1109/UEMCON53757.2021.9666627
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Phishing attacks are one of the most common social engineering attacks targeting users' emails to fraudulently steal confidential and sensitive information. They can be used as a part of more massive attacks launched to gain a foothold in corporate or government networks. Over the last decade, a number of anti-phishing techniques have been proposed to detect and mitigate these attacks. However, they are still inefficient and inaccurate. Thus, there is a great need for efficient and accurate detection techniques to cope with these attacks. In this paper, we proposed a phishing attack detection technique based on machine learning. We collected and analyzed more than 4000 phishing emails targeting the email service of the University of North Dakota. We modeled these attacks by selecting 10 relevant features and building a large dataset. This dataset was used to train, validate, and test the machine learning algorithms. For performance evaluation, four metrics have been used, namely probability of detection, probability of miss-detection, probability of false alarm, and accuracy. The experimental results show that better detection can be achieved using an artificial neural network.
引用
收藏
页码:250 / 255
页数:6
相关论文
共 50 条
  • [41] Machine Learning Techniques for Detecting Phishing URL Attacks
    Mosa, Diana T.
    Shams, Mahmoud Y.
    Abohany, Amr A.
    El-kenawy, El-Sayed M.
    Thabet, M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (01): : 1271 - 1290
  • [42] A Weighted Machine Learning-Based Attacks Classification to Alleviating Class Imbalance
    Chkirbene, Zina
    Erbad, Aiman
    Hamila, Ridha
    Gouissem, Ala
    Mohamed, Amr
    Guizani, Mohsen
    Hamdi, Mounir
    IEEE SYSTEMS JOURNAL, 2021, 15 (04): : 4780 - 4791
  • [43] MLPhishChain: a machine learning-based blockchain framework for reducing phishing threats
    Trad, Fouad
    Semaan-Nasr, Elie
    Chehab, Ali
    FRONTIERS IN BLOCKCHAIN, 2024, 7
  • [44] A GPU-based machine learning approach for detection of botnet attacks
    Motylinski, Michal
    MacDermott, Aine
    Iqbal, Farkhund
    Shah, Babar
    COMPUTERS & SECURITY, 2022, 123
  • [45] Using Domain Top-page Similarity Feature in Machine Learning-based Web Phishing Detection
    Sanglerdsinlapachai, Nuttapong
    Rungsawang, Arnon
    THIRD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING: WKDD 2010, PROCEEDINGS, 2010, : 187 - 190
  • [46] Amplification methods to promote the attacks against machine learning-based intrusion detection systems
    Zhang, Sicong
    Xu, Yang
    Zhang, Xinyu
    Xie, Xiaoyao
    APPLIED INTELLIGENCE, 2024, 54 (04) : 2941 - 2961
  • [47] A novel approach for phishing URLs detection using lexical based machine learning in a real-time environment
    Gupta, Brij B.
    Yadav, Krishna
    Razzak, Imran
    Psannis, Konstantinos
    Castiglione, Arcangelo
    Chang, Xiaojun
    COMPUTER COMMUNICATIONS, 2021, 175 : 47 - 57
  • [48] Comparison of Multiple Feature Selection Techniques for Machine Learning-Based Detection of IoT Attacks
    Viet Anh Phan
    Jerabek, Jan
    Malina, Lukas
    19TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY, AND SECURITY, ARES 2024, 2024,
  • [49] Phishing Email Detection Using Machine Learning Techniques
    Alattas, Hussain
    Aljohar, Fay
    Aljunibi, Hawra
    Alweheibi, Muneera
    Alrashdi, Rawan
    Al Azman, Ghadeer
    Alharby, Abdulrahman
    Nagy, Naya
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (04): : 678 - 685
  • [50] Amplification methods to promote the attacks against machine learning-based intrusion detection systems
    Sicong Zhang
    Yang Xu
    Xinyu Zhang
    Xiaoyao Xie
    Applied Intelligence, 2024, 54 : 2941 - 2961