Network Topology Inference Using Higher-Order Statistical Characteristics of End-to-End Measured Delays

被引:3
作者
Fei, Gaolei [1 ]
Ye, Jian [1 ]
Wen, Sheng [2 ]
Hu, Guangmin [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Swinburne Univ Technol, Sch Software & Elect Engn, Hawthorn, Vic 3122, Australia
基金
中国国家自然科学基金;
关键词
Higher-order cumulant; topology inference; end-to-end measurement; network tomography; MULTIPLE-SOURCE; TOMOGRAPHY; DISCOVERY; EFFICIENT; ALGORITHM;
D O I
10.1109/ACCESS.2020.2982653
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Network topology is important information for many network control and management applications. Network tomography infers network topology from end-to-end measured packet delays or losses, which is more feasible than internal cooperation-based methods and attracts many studies. Most of the existing methods for network topology inference usually function under the assumption that the distribution of packet delay or loss follows a given distribution (e.g., Gaussian or Gaussian mixture), and they estimate network topology from the parameters of the given distribution. However, these methods may fail to obtain an accurate estimation because the real distribution of packet delay or loss usually cannot be described by a certain distribution. In this paper, we present a novel network topology inference method based on the unicast end-to-end measured delays. The method abandons the assumption of packet delay distribution and constructs network topology by inferring the higher-order cumulants of internal links from the end-to-end measured delays. The analytical and simulation results show that the proposed method offers over 10% improvement in accuracy compared with that of the state-of-the-art works.
引用
收藏
页码:59960 / 59975
页数:16
相关论文
empty
未找到相关数据