Five-loop ε expansion for O (n) X O (m) spin models

被引:41
作者
Calabrese, P
Parruccini, P
机构
[1] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[2] Ist Nazl Fis Nucl, I-56126 Pisa, Italy
[3] Univ Pisa, Dipartimento Fis, I-56100 Pisa, Italy
[4] Ist Nazl Fis Nucl, I-56100 Pisa, Italy
关键词
D O I
10.1016/j.nuclphysb.2003.12.002
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We compute the renormalization group functions of a Landau-Ginzburg-Wilson Hamiltonian with O(n) x O(m) symmetry up to five-loop in minimal subtraction scheme. The line n(+)(m, d), which limits the region of second-order phase transition, is reconstructed in the framework of the epsilon = 4 - d expansion for generic values of m up to O(epsilon(5)). For the physically interesting case of noncollinear but planar orderings (m = 2) we obtain n(+)(2, 3) = 6.1(6) by exploiting different resummation procedures. We substantiate this results reanalyzing six-loop fixed dimension series with pseudo-epsilon expansion, obtaining n(+)(2, 3) = 6.22(12). We also provide predictions for the critical exponents characterizing the second-order phase transition occurring for n > n(+). (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:568 / 596
页数:29
相关论文
共 59 条
[1]   CHIRAL TRANSITIONS IN 3-DIMENSIONAL MAGNETS AND HIGHER-ORDER EPSILON-EXPANSION [J].
ANTONENKO, SA ;
SOKOLOV, AI ;
VARNASHEV, KB .
PHYSICS LETTERS A, 1995, 208 (1-2) :161-164
[2]   PHASE-TRANSITIONS IN ANISOTROPIC SUPERCONDUCTING AND MAGNETIC SYSTEMS WITH VECTOR ORDER PARAMETERS - 3-LOOP RENORMALIZATION-GROUP ANALYSIS [J].
ANTONENKO, SA ;
SOKOLOV, AI .
PHYSICAL REVIEW B, 1994, 49 (22) :15901-15912
[3]   A RENORMALIZATION-GROUP STUDY OF HELIMAGNETS IN D=2+EPSILON DIMENSIONS [J].
AZARIA, P ;
DELAMOTTE, B ;
DELDUC, F ;
JOLICOEUR, T .
NUCLEAR PHYSICS B, 1993, 408 (03) :485-511
[4]   PHASE-TRANSITIONS NOT CONTROLLED BY STABLE FIXED-POINTS [J].
BAILIN, D ;
LOVE, A ;
MOORE, MA .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1977, 10 (08) :1159-1174
[5]   Phase diagram of XY antiferromagnetic stacked triangular lattices [J].
Boubcheur, EH ;
Loison, D ;
Diep, HT .
PHYSICAL REVIEW B, 1996, 54 (06) :4165-4169
[6]   CsMn(BrxI1-x)3:: Crossover from an XY to an Ising chiral antiferromagnet [J].
Bügel, R ;
Wosnitza, J ;
von Löhneysen, H ;
Ono, T ;
Tanaka, H .
PHYSICAL REVIEW B, 2001, 64 (09)
[7]   Spin stiffness and topological defects in two-dimensional frustrated spin systems [J].
Caffarel, M ;
Azaria, P ;
Delamotte, B ;
Mouhanna, D .
PHYSICAL REVIEW B, 2001, 64 (01)
[8]   Chiral phase transitions: Focus driven critical behavior in systems with planar and vector ordering [J].
Calabrese, P ;
Parruccini, P ;
Sokolov, AI .
PHYSICAL REVIEW B, 2002, 66 (18) :1-4
[9]   Critical thermodynamics of a three-dimensional chiral model for N>3 -: art. no. 094415 [J].
Calabrese, P ;
Parruccini, P ;
Sokolov, AI .
PHYSICAL REVIEW B, 2003, 68 (09)
[10]   Chiral critical behavior of frustrated spin systems in two dimensions from five-loop renormalization-group expansions [J].
Calabrese, P ;
Orlov, EV ;
Parruccini, P ;
Sokolov, AI .
PHYSICAL REVIEW B, 2003, 67 (02)