On the Second Homotopy Group of Spaces of Commuting Elements in Lie Groups

被引:1
|
作者
Adem, Alejandro [1 ]
Manuel Gomez, Jose [2 ]
Gritschacher, Simon [3 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Univ Nacl Colombia Sede Medellin, Escuela Matemat, Medellin 050034, Colombia
[3] Univ Copenhagen, Dept Math Sci, DK-2100 Copenhagen, Denmark
基金
新加坡国家研究基金会; 加拿大自然科学与工程研究理事会;
关键词
G-BUNDLES; COHOMOLOGY; MODULI; TUPLES;
D O I
10.1093/imrn/rnab259
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a compact connected Lie group and n >= 1 an integer. Consider the space of ordered commuting n-tuples in G, Hom(Z(n), G), and its quotient under the adjoint action, Rep (Z(n), G) := Hom(Z(n), G)/ G. In this article, we study and in many cases compute the homotopy groups pi(2)(Hom(Z(2), G)). For G simply connected and simple, we show that pi(2)(Hom(Z(2), G)) congruent to Z and pi(2)(Rep(Z(2), G)) congruent to Z and that on these groups the quotient map Hom(Z(2), G) -> Rep(Z(2), G) induces multiplication by the Dynkin index of G. More generally, we show that if G is simple and Hom(Z(2), G)(1) subset of Hom(Z(2), G) is the path component of the trivial homomorphism, then H-2(Hom(Z(2), G)(1); Z) is an extension of the Schur multiplier of pi(1)(G)(2) by Z. We apply our computations to prove that if B(com)G(1) is the classifying space for commutativity at the identity component, then pi(4)(B(com)G(1)) congruent to Z circle plus Z, and we construct examples of non-trivial transitionally commutative structures on the trivial principal G-bundle over the sphere S-4.
引用
收藏
页码:19617 / 19689
页数:73
相关论文
共 23 条
  • [2] Stable splittings, spaces of representations and almost commuting elements in Lie groups
    Adem, Alejandro
    Cohen, Frederick R.
    Gomez, Jose Manuel
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 149 : 455 - 490
  • [3] The space of commuting elements in a Lie group and maps between classifying spaces
    Kishimoto, Daisuke
    Takeda, Masahiro
    Tsutaya, Mitsunobu
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023,
  • [4] Spaces of commuting elements in the classical groups
    Kishimoto, Daisuke
    Takeda, Masahiro
    ADVANCES IN MATHEMATICS, 2021, 386
  • [5] Torsion in the space of commuting elements in a Lie group
    Kishimoto, Daisuke
    Takeda, Masahiro
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024, 76 (03): : 1033 - 1061
  • [6] A stable splitting for spaces of commuting elements in unitary groups
    Adem, Alejandro
    Gomez, Jose Manuel
    Gritschacher, Simon
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (02):
  • [7] On homotopy groups of quandle spaces and the quandle homotopy invariant of links
    Nosaka, Takefumi
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (08) : 996 - 1011
  • [8] Representation stability for homotopy groups of configuration spaces
    Kupers, Alexander
    Miller, Jeremy
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 737 : 217 - 253
  • [9] A Survey on Spaces of Homomorphisms to Lie Groups
    Cohen, Frederick R.
    Stafa, Mentor
    CONFIGURATION SPACES: GEOMETRY, TOPOLOGY AND REPRESENTATION THEORY, 2016, 14 : 361 - 379
  • [10] THE SECOND STABLE HOMOTOPY GROUPS OF MOTIVIC SPHERES
    Roendigs, Oliver
    Spitzweck, Markus
    Ostvaer, Paul arne
    DUKE MATHEMATICAL JOURNAL, 2024, 173 (06) : 1017 - 1084