EXISTENCE AND ASYMPTOTIC BEHAVIOR OF GROUND STATE SIGN-CHANGING SOLUTIONS FOR A NONLINEAR SCHRODINGER-POISSON-KIRCHHOFF SYSTEM IN R3

被引:0
作者
Zhang, Mingming [1 ]
Qian, Aixia [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Jining, Shandong, Peoples R China
关键词
Schrodinger-Poisson-Kirchhoff system; ground state; sign-changing solution; Brouwer degree theory; nonlocal term; NODAL SOLUTIONS; EQUATIONS;
D O I
10.1216/rmj.2021.51.1879
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the existence and asymptotic behavior of ground state sign-changing solutions for the following nonlinear Schrodinger-Poisson-Kirchhoff system: {-(a+b integral(R3) vertical bar del u vertical bar(2) dx)Delta u + V(x)u +k(x)phi u = lambda f(x)u + g(x, u) in R-3, -Delta phi = k(x)u(2), in R-3, Under some mild assumptions, by using a series of constructive Nehari manifolds and a quantitative deformation lemma, we prove that the Schrodinger-Poisson-Kirchhoff system possesses at least one ground state sign-changing solution ub for all b > 0. Moreover, for any sequence {b(n)} -> 0(+) (n -> infinity), there exists a subsequence {b(nk)}, such that {u(bnk)} converges to u(0), where u(0) is a sign-changing solution of the equation -a Delta u + V(x)u = lambda f(x)u + g(x, u), x is an element of R-3.
引用
收藏
页码:1879 / 1897
页数:19
相关论文
共 17 条
[1]   Partial symmetry of least energy nodal solutions to some variational problems [J].
Bartsch, T ;
Weth, T ;
Willew, M .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1) :1-18
[2]   Three nodal solutions of singularly perturbed elliptic equations on domains without topology [J].
Bartsch, T ;
Weth, T .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (03) :259-281
[3]   Positive and nodal solutions for a nonlinear Schrodinger-Poisson system with sign-changing potentials [J].
Batista, Alex M. ;
Furtado, Marcelo F. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 39 :142-156
[4]   SCHRODINGER-KIRCHHOFF-POISSON TYPE SYSTEMS [J].
Batkam, Cyril Joel ;
Santos Junior, Joao R. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (02) :429-444
[5]   The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function [J].
Brown, KJ ;
Zhang, YP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 193 (02) :481-499
[6]   Ground state sign-changing solutions for a class of generalized quasilinear Schrodinger equations with a Kirchhoff-type perturbation [J].
Chen, Jianhua ;
Tang, Xianhua ;
Gao, Zu ;
Cheng, Bitao .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (04) :3127-3149
[7]   Existence of multiple solutions for modified Schrodinger-Kirchhoff-Poisson type systems via perturbation method with sign-changing potential [J].
Chen, Jianhua ;
Tang, Xianhua ;
Gao, Zu .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (03) :505-519
[8]   Nehari's problem and competing species systems [J].
Conti, M ;
Terracini, S ;
Verzini, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (06) :871-888
[9]  
Fonseca I., 1995, Oxford Lecture Ser. Math. Appl, V2
[10]   Existence of sign-changing solutions for nonlocal Kirchhoff-Schrodinger-type equations in R3 [J].
Li, Qi ;
Du, Xinsheng ;
Zhao, Zengqin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 477 (01) :174-186