Existence of anti-periodic mild solutions for a class of semilinear fractional differential equations

被引:22
作者
Cao, Junfei [1 ]
Yang, Qigui [1 ]
Huang, Zaitang [1 ,2 ]
机构
[1] S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
[2] Wuzhou Univ, Sch Math & Phys, Wuzhou 543002, Peoples R China
基金
中国国家自然科学基金;
关键词
Anti-periodic mild solutions; Semilinear fractional differential equations; Solution operator; Fractional integral; PERIODIC-SOLUTIONS; AUTOMORPHIC SOLUTIONS; CAUCHY-PROBLEM; UNIQUENESS;
D O I
10.1016/j.cnsns.2011.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is concerned with the existence of anti-periodic mild solutions for a class of semilinear fractional differential equations D-t(alpha)chi(t) = A chi(t) + Dt alpha-1F(t, chi(t)). t epsilon R, where 1 < alpha < 2, A is a linear densely defined operator of sectorial type of omega < 0 on a complex Banach space X and F is an appropriate function defined on phase space, the fractional derivative is understood in the Riemann-Liouville sense. The results obtained are utilized to study the existence of anti-periodic mild solutions to a fractional relaxation-oscillation equation. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:277 / 283
页数:7
相关论文
共 49 条
[1]   A Survey on Semilinear Differential Equations and Inclusions Involving Riemann-Liouville Fractional Derivative [J].
Agarwal, Ravi P. ;
Belmekki, Mohammed ;
Benchohra, Mouffak .
ADVANCES IN DIFFERENCE EQUATIONS, 2009, :1-47
[2]   Pseudo-almost periodic solutions of a class of semilinear fractional differential equations [J].
Agarwal R.P. ;
Cuevas C. ;
Soto H. .
Journal of Applied Mathematics and Computing, 2011, 37 (1-2) :625-634
[3]   Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations [J].
Agarwal, Ravi P. ;
de Andrade, Bruno ;
Cuevas, Claudio .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) :3532-3554
[4]   On Type of Periodicity and Ergodicity to a Class of Fractional Order Differential Equations [J].
Agarwal, Ravi P. ;
de Andrade, Bruno ;
Cuevas, Claudio .
ADVANCES IN DIFFERENCE EQUATIONS, 2010,
[5]   On the concept of solution for fractional differential equations with uncertainty [J].
Agarwal, Ravi P. ;
Lakshmikantham, V. ;
Nieto, Juan J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) :2859-2862
[6]   A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions [J].
Agarwal, Ravi P. ;
Benchohra, Mouffak ;
Hamani, Samira .
ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (03) :973-1033
[7]  
Aizicovici S, 1999, DISCRET CONTIN DYN S, V5, P35
[8]   Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities [J].
Aizicovici, S ;
McKibben, M ;
Reich, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 43 (02) :233-251
[9]   ANTIPERIODIC SOLUTIONS TO A CLASS OF NONLINEAR DIFFERENTIAL-EQUATIONS IN HILBERT-SPACE [J].
AIZICOVICI, S ;
PAVEL, NH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (02) :387-408
[10]  
Anh V., 2003, J. Appl. Math. and Stoch. Anal., V16, P97, DOI DOI 10.1155/S1048953303000078